Regulation of neuritogenesis in hippocampal neurons using stiffness of extracellular microenvironment
The mechanosensitivity of neurons in the central nervous system (CNS) is an interesting issue as regards understanding neuronal development and designing compliant materials as neural interfaces between neurons and external devices for treating CNS injuries and disorders. Although neurite initiation...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-02, Vol.13 (2), p.e0191928-e0191928 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0191928 |
---|---|
container_issue | 2 |
container_start_page | e0191928 |
container_title | PloS one |
container_volume | 13 |
creator | Tanaka, Aya Fujii, Yuki Kasai, Nahoko Okajima, Takaharu Nakashima, Hiroshi |
description | The mechanosensitivity of neurons in the central nervous system (CNS) is an interesting issue as regards understanding neuronal development and designing compliant materials as neural interfaces between neurons and external devices for treating CNS injuries and disorders. Although neurite initiation from a cell body is known to be the first step towards forming a functional nervous network during development or regeneration, less is known about how the mechanical properties of the extracellular microenvironment affect neuritogenesis. Here, we investigated the filamentous actin (F-actin) cytoskeletal structures of neurons, which are a key factor in neuritogenesis, on gel substrates with a stiffness-controlled substrate, to reveal the relationship between substrate stiffness and neuritogenesis. We found that neuritogenesis was significantly suppressed on a gel substrate with an elastic modulus higher than the stiffness of in vivo brain. Fluorescent images of the F-actin cytoskeletal structures showed that the F-actin organization depended on the substrate stiffness. Circumferential actin meshworks and arcs were formed at the edge of the cell body on the stiff gel substrates unlike with soft substrates. The suppression of F-actin cytoskeleton formation improved neuritogenesis. The results indicate that the organization of neuronal F-actin cytoskeletons is strongly regulated by the mechanical properties of the surrounding environment, and the mechanically-induced F-actin cytoskeletons regulate neuritogenesis. |
doi_str_mv | 10.1371/journal.pone.0191928 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1995244477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A526511506</galeid><doaj_id>oai_doaj_org_article_da25c72f9b8b4eed9f9c6cd49cea63fc</doaj_id><sourcerecordid>A526511506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4c41c5abd94dfb8f99d38dd5ab360aecf4ad9e728d44365b36e59565212a79013</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmbpM2NsCx-DCwsrB-3IZOcdLK0SU3aRf-96Ux3mcpeSCktJ8_7tucry15itMZlhT_c-DE42a5772CNMMe8qB9lp5iXxYoVqHx89H6SPYvxBiFa1ow9zU4KTlCd7tMMrqEZWzlY73JvcgdjsINvwEG0Mbcu39m-90p2vWz3p97FfIzWNXkcrDGJi5MQfg9BKmjbZBbyzqrgwd3ahHfghufZEyPbCC_m51n24_On7xdfV5dXXzYX55crxXgxrIgiWFG51Zxos60N57qstU6RkiEJyhCpOVRFrQkpGU1RoJwyWuBCVhzh8ix7ffDtWx_FXKEoMOe0IIRUVSI2B0J7eSP6YDsZ_ggvrdgHfGiEDINVLQgtC6qqwvBtvSUAmhuumNKEK5CsNCp5fZy_Nm470ColGmS7MF2eOLsTjb8VtEaIUZIM3s0Gwf8aIQ6is3EqonTgx_1_p7YShlBC3_yDPpzdTDUyJWCd8VNXJlNxTgtGMaaIJWr9AJUuDalxaZyMTfGF4P1CkJghNbyRY4xi8-36_9mrn0v27RG7A9kOu-jbcZrGuATJAUxjFWMAc19kjMS0DXfVENM2iHkbkuzVcYPuRXfjX_4FJ6AIKw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1995244477</pqid></control><display><type>article</type><title>Regulation of neuritogenesis in hippocampal neurons using stiffness of extracellular microenvironment</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tanaka, Aya ; Fujii, Yuki ; Kasai, Nahoko ; Okajima, Takaharu ; Nakashima, Hiroshi</creator><contributor>Lam, Wilbur</contributor><creatorcontrib>Tanaka, Aya ; Fujii, Yuki ; Kasai, Nahoko ; Okajima, Takaharu ; Nakashima, Hiroshi ; Lam, Wilbur</creatorcontrib><description>The mechanosensitivity of neurons in the central nervous system (CNS) is an interesting issue as regards understanding neuronal development and designing compliant materials as neural interfaces between neurons and external devices for treating CNS injuries and disorders. Although neurite initiation from a cell body is known to be the first step towards forming a functional nervous network during development or regeneration, less is known about how the mechanical properties of the extracellular microenvironment affect neuritogenesis. Here, we investigated the filamentous actin (F-actin) cytoskeletal structures of neurons, which are a key factor in neuritogenesis, on gel substrates with a stiffness-controlled substrate, to reveal the relationship between substrate stiffness and neuritogenesis. We found that neuritogenesis was significantly suppressed on a gel substrate with an elastic modulus higher than the stiffness of in vivo brain. Fluorescent images of the F-actin cytoskeletal structures showed that the F-actin organization depended on the substrate stiffness. Circumferential actin meshworks and arcs were formed at the edge of the cell body on the stiff gel substrates unlike with soft substrates. The suppression of F-actin cytoskeleton formation improved neuritogenesis. The results indicate that the organization of neuronal F-actin cytoskeletons is strongly regulated by the mechanical properties of the surrounding environment, and the mechanically-induced F-actin cytoskeletons regulate neuritogenesis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0191928</identifier><identifier>PMID: 29408940</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Axonogenesis ; Biology and Life Sciences ; Brain ; Brain injury ; Brain research ; Care and treatment ; Cell anatomy ; Cell body ; Central nervous system ; Central nervous system diseases ; Cytoskeleton ; Development and progression ; Extracellular matrix ; Fluorescence ; Hippocampus ; Information science ; Interfaces ; Laboratories ; Mechanical properties ; Modulus of elasticity ; Morphology ; Muscle proteins ; Nervous system ; Neurons ; Physical Sciences ; Physiological aspects ; Polymerization ; Regeneration ; Research and Analysis Methods ; Stiffness ; Substrates</subject><ispartof>PloS one, 2018-02, Vol.13 (2), p.e0191928-e0191928</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Tanaka et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Tanaka et al 2018 Tanaka et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4c41c5abd94dfb8f99d38dd5ab360aecf4ad9e728d44365b36e59565212a79013</citedby><cites>FETCH-LOGICAL-c692t-4c41c5abd94dfb8f99d38dd5ab360aecf4ad9e728d44365b36e59565212a79013</cites><orcidid>0000-0002-5402-752X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5800654/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5800654/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29408940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lam, Wilbur</contributor><creatorcontrib>Tanaka, Aya</creatorcontrib><creatorcontrib>Fujii, Yuki</creatorcontrib><creatorcontrib>Kasai, Nahoko</creatorcontrib><creatorcontrib>Okajima, Takaharu</creatorcontrib><creatorcontrib>Nakashima, Hiroshi</creatorcontrib><title>Regulation of neuritogenesis in hippocampal neurons using stiffness of extracellular microenvironment</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The mechanosensitivity of neurons in the central nervous system (CNS) is an interesting issue as regards understanding neuronal development and designing compliant materials as neural interfaces between neurons and external devices for treating CNS injuries and disorders. Although neurite initiation from a cell body is known to be the first step towards forming a functional nervous network during development or regeneration, less is known about how the mechanical properties of the extracellular microenvironment affect neuritogenesis. Here, we investigated the filamentous actin (F-actin) cytoskeletal structures of neurons, which are a key factor in neuritogenesis, on gel substrates with a stiffness-controlled substrate, to reveal the relationship between substrate stiffness and neuritogenesis. We found that neuritogenesis was significantly suppressed on a gel substrate with an elastic modulus higher than the stiffness of in vivo brain. Fluorescent images of the F-actin cytoskeletal structures showed that the F-actin organization depended on the substrate stiffness. Circumferential actin meshworks and arcs were formed at the edge of the cell body on the stiff gel substrates unlike with soft substrates. The suppression of F-actin cytoskeleton formation improved neuritogenesis. The results indicate that the organization of neuronal F-actin cytoskeletons is strongly regulated by the mechanical properties of the surrounding environment, and the mechanically-induced F-actin cytoskeletons regulate neuritogenesis.</description><subject>Actin</subject><subject>Axonogenesis</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain injury</subject><subject>Brain research</subject><subject>Care and treatment</subject><subject>Cell anatomy</subject><subject>Cell body</subject><subject>Central nervous system</subject><subject>Central nervous system diseases</subject><subject>Cytoskeleton</subject><subject>Development and progression</subject><subject>Extracellular matrix</subject><subject>Fluorescence</subject><subject>Hippocampus</subject><subject>Information science</subject><subject>Interfaces</subject><subject>Laboratories</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Morphology</subject><subject>Muscle proteins</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Polymerization</subject><subject>Regeneration</subject><subject>Research and Analysis Methods</subject><subject>Stiffness</subject><subject>Substrates</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEmbpM2NsCx-DCwsrB-3IZOcdLK0SU3aRf-96Ux3mcpeSCktJ8_7tucry15itMZlhT_c-DE42a5772CNMMe8qB9lp5iXxYoVqHx89H6SPYvxBiFa1ow9zU4KTlCd7tMMrqEZWzlY73JvcgdjsINvwEG0Mbcu39m-90p2vWz3p97FfIzWNXkcrDGJi5MQfg9BKmjbZBbyzqrgwd3ahHfghufZEyPbCC_m51n24_On7xdfV5dXXzYX55crxXgxrIgiWFG51Zxos60N57qstU6RkiEJyhCpOVRFrQkpGU1RoJwyWuBCVhzh8ix7ffDtWx_FXKEoMOe0IIRUVSI2B0J7eSP6YDsZ_ggvrdgHfGiEDINVLQgtC6qqwvBtvSUAmhuumNKEK5CsNCp5fZy_Nm470ColGmS7MF2eOLsTjb8VtEaIUZIM3s0Gwf8aIQ6is3EqonTgx_1_p7YShlBC3_yDPpzdTDUyJWCd8VNXJlNxTgtGMaaIJWr9AJUuDalxaZyMTfGF4P1CkJghNbyRY4xi8-36_9mrn0v27RG7A9kOu-jbcZrGuATJAUxjFWMAc19kjMS0DXfVENM2iHkbkuzVcYPuRXfjX_4FJ6AIKw</recordid><startdate>20180206</startdate><enddate>20180206</enddate><creator>Tanaka, Aya</creator><creator>Fujii, Yuki</creator><creator>Kasai, Nahoko</creator><creator>Okajima, Takaharu</creator><creator>Nakashima, Hiroshi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5402-752X</orcidid></search><sort><creationdate>20180206</creationdate><title>Regulation of neuritogenesis in hippocampal neurons using stiffness of extracellular microenvironment</title><author>Tanaka, Aya ; Fujii, Yuki ; Kasai, Nahoko ; Okajima, Takaharu ; Nakashima, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4c41c5abd94dfb8f99d38dd5ab360aecf4ad9e728d44365b36e59565212a79013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actin</topic><topic>Axonogenesis</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain injury</topic><topic>Brain research</topic><topic>Care and treatment</topic><topic>Cell anatomy</topic><topic>Cell body</topic><topic>Central nervous system</topic><topic>Central nervous system diseases</topic><topic>Cytoskeleton</topic><topic>Development and progression</topic><topic>Extracellular matrix</topic><topic>Fluorescence</topic><topic>Hippocampus</topic><topic>Information science</topic><topic>Interfaces</topic><topic>Laboratories</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Morphology</topic><topic>Muscle proteins</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Polymerization</topic><topic>Regeneration</topic><topic>Research and Analysis Methods</topic><topic>Stiffness</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Aya</creatorcontrib><creatorcontrib>Fujii, Yuki</creatorcontrib><creatorcontrib>Kasai, Nahoko</creatorcontrib><creatorcontrib>Okajima, Takaharu</creatorcontrib><creatorcontrib>Nakashima, Hiroshi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Aya</au><au>Fujii, Yuki</au><au>Kasai, Nahoko</au><au>Okajima, Takaharu</au><au>Nakashima, Hiroshi</au><au>Lam, Wilbur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of neuritogenesis in hippocampal neurons using stiffness of extracellular microenvironment</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-02-06</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>e0191928</spage><epage>e0191928</epage><pages>e0191928-e0191928</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The mechanosensitivity of neurons in the central nervous system (CNS) is an interesting issue as regards understanding neuronal development and designing compliant materials as neural interfaces between neurons and external devices for treating CNS injuries and disorders. Although neurite initiation from a cell body is known to be the first step towards forming a functional nervous network during development or regeneration, less is known about how the mechanical properties of the extracellular microenvironment affect neuritogenesis. Here, we investigated the filamentous actin (F-actin) cytoskeletal structures of neurons, which are a key factor in neuritogenesis, on gel substrates with a stiffness-controlled substrate, to reveal the relationship between substrate stiffness and neuritogenesis. We found that neuritogenesis was significantly suppressed on a gel substrate with an elastic modulus higher than the stiffness of in vivo brain. Fluorescent images of the F-actin cytoskeletal structures showed that the F-actin organization depended on the substrate stiffness. Circumferential actin meshworks and arcs were formed at the edge of the cell body on the stiff gel substrates unlike with soft substrates. The suppression of F-actin cytoskeleton formation improved neuritogenesis. The results indicate that the organization of neuronal F-actin cytoskeletons is strongly regulated by the mechanical properties of the surrounding environment, and the mechanically-induced F-actin cytoskeletons regulate neuritogenesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29408940</pmid><doi>10.1371/journal.pone.0191928</doi><tpages>e0191928</tpages><orcidid>https://orcid.org/0000-0002-5402-752X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-02, Vol.13 (2), p.e0191928-e0191928 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1995244477 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Actin Axonogenesis Biology and Life Sciences Brain Brain injury Brain research Care and treatment Cell anatomy Cell body Central nervous system Central nervous system diseases Cytoskeleton Development and progression Extracellular matrix Fluorescence Hippocampus Information science Interfaces Laboratories Mechanical properties Modulus of elasticity Morphology Muscle proteins Nervous system Neurons Physical Sciences Physiological aspects Polymerization Regeneration Research and Analysis Methods Stiffness Substrates |
title | Regulation of neuritogenesis in hippocampal neurons using stiffness of extracellular microenvironment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20neuritogenesis%20in%20hippocampal%20neurons%20using%20stiffness%20of%20extracellular%20microenvironment&rft.jtitle=PloS%20one&rft.au=Tanaka,%20Aya&rft.date=2018-02-06&rft.volume=13&rft.issue=2&rft.spage=e0191928&rft.epage=e0191928&rft.pages=e0191928-e0191928&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0191928&rft_dat=%3Cgale_plos_%3EA526511506%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1995244477&rft_id=info:pmid/29408940&rft_galeid=A526511506&rft_doaj_id=oai_doaj_org_article_da25c72f9b8b4eed9f9c6cd49cea63fc&rfr_iscdi=true |