Recapitulation of Ayurveda constitution types by machine learning of phenotypic traits
In Ayurveda system of medicine individuals are classified into seven constitution types, "Prakriti", for assessing disease susceptibility and drug responsiveness. Prakriti evaluation involves clinical examination including questions about physiological and behavioural traits. A need was fe...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-10, Vol.12 (10), p.e0185380-e0185380 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0185380 |
---|---|
container_issue | 10 |
container_start_page | e0185380 |
container_title | PloS one |
container_volume | 12 |
creator | Tiwari, Pradeep Kutum, Rintu Sethi, Tavpritesh Shrivastava, Ankita Girase, Bhushan Aggarwal, Shilpi Patil, Rutuja Agarwal, Dhiraj Gautam, Pramod Agrawal, Anurag Dash, Debasis Ghosh, Saurabh Juvekar, Sanjay Mukerji, Mitali Prasher, Bhavana |
description | In Ayurveda system of medicine individuals are classified into seven constitution types, "Prakriti", for assessing disease susceptibility and drug responsiveness. Prakriti evaluation involves clinical examination including questions about physiological and behavioural traits. A need was felt to develop models for accurately predicting Prakriti classes that have been shown to exhibit molecular differences. The present study was carried out on data of phenotypic attributes in 147 healthy individuals of three extreme Prakriti types, from a genetically homogeneous population of Western India. Unsupervised and supervised machine learning approaches were used to infer inherent structure of the data, and for feature selection and building classification models for Prakriti respectively. These models were validated in a North Indian population. Unsupervised clustering led to emergence of three natural clusters corresponding to three extreme Prakriti classes. The supervised modelling approaches could classify individuals, with distinct Prakriti types, in the training and validation sets. This study is the first to demonstrate that Prakriti types are distinct verifiable clusters within a multidimensional space of multiple interrelated phenotypic traits. It also provides a computational framework for predicting Prakriti classes from phenotypic attributes. This approach may be useful in precision medicine for stratification of endophenotypes in healthy and diseased populations. |
doi_str_mv | 10.1371/journal.pone.0185380 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1991851306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A508208876</galeid><doaj_id>oai_doaj_org_article_714cf8caf04f4e83a9eec1f81927f347</doaj_id><sourcerecordid>A508208876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-22843734cc2dea3e9dd07661baf1bf4a586ceeeb137daf52e916cfe87d76a36c3</originalsourceid><addsrcrecordid>eNqNkt9r2zAQx83YWLts_8HYDIOxPSSzLFuWXwah7EegUOi2voqLfEpUFMmz5LL895MTt8SjD0MPFrrPfc93902S1yRbEFqRT7eu7yyYRessLjLCS8qzJ8k5qWk-Z3lGn57cz5IX3t9mWWQYe56c5bzmpCzYeXJzjRJaHXoDQTubOpUu9313hw2k0lkfYugQCPsWfbrepzuQW20xNQid1XYzpLRbtC4SWqahAx38y-SZAuPx1fidJb--fvl58X1-efVtdbG8nEtW52Ge57ygFS2kzBsEinXTZBVjZA2KrFUBJWcSEdex4QZUmWNNmFTIq6ZiQJmks-TtUbc1zotxJF6Quo4DITRjkVgdicbBrWg7vYNuLxxocXhw3UZAF7Q0KCpSSMUlqKxQBXIKNaIkipM6rxQtqqj1eazWr3fYSLSxWzMRnUas3oqNuxMlyzmPe5glH0aBzv3u0Qex016iMWDR9cN_F7walsQj-u4f9PHuRmoDsQFtlYt15SAqlmUWS3JeDdTiESqeBnc6bhmVju-ThI-ThMgE_BM20HsvVj-u_5-9upmy70_YLYIJW-_MwWF-ChZHUHbO-w7Vw5BJJgb7309DDPYXo_1j2pvTBT0k3fud_gX-1AGr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1991851306</pqid></control><display><type>article</type><title>Recapitulation of Ayurveda constitution types by machine learning of phenotypic traits</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Tiwari, Pradeep ; Kutum, Rintu ; Sethi, Tavpritesh ; Shrivastava, Ankita ; Girase, Bhushan ; Aggarwal, Shilpi ; Patil, Rutuja ; Agarwal, Dhiraj ; Gautam, Pramod ; Agrawal, Anurag ; Dash, Debasis ; Ghosh, Saurabh ; Juvekar, Sanjay ; Mukerji, Mitali ; Prasher, Bhavana</creator><creatorcontrib>Tiwari, Pradeep ; Kutum, Rintu ; Sethi, Tavpritesh ; Shrivastava, Ankita ; Girase, Bhushan ; Aggarwal, Shilpi ; Patil, Rutuja ; Agarwal, Dhiraj ; Gautam, Pramod ; Agrawal, Anurag ; Dash, Debasis ; Ghosh, Saurabh ; Juvekar, Sanjay ; Mukerji, Mitali ; Prasher, Bhavana</creatorcontrib><description>In Ayurveda system of medicine individuals are classified into seven constitution types, "Prakriti", for assessing disease susceptibility and drug responsiveness. Prakriti evaluation involves clinical examination including questions about physiological and behavioural traits. A need was felt to develop models for accurately predicting Prakriti classes that have been shown to exhibit molecular differences. The present study was carried out on data of phenotypic attributes in 147 healthy individuals of three extreme Prakriti types, from a genetically homogeneous population of Western India. Unsupervised and supervised machine learning approaches were used to infer inherent structure of the data, and for feature selection and building classification models for Prakriti respectively. These models were validated in a North Indian population. Unsupervised clustering led to emergence of three natural clusters corresponding to three extreme Prakriti classes. The supervised modelling approaches could classify individuals, with distinct Prakriti types, in the training and validation sets. This study is the first to demonstrate that Prakriti types are distinct verifiable clusters within a multidimensional space of multiple interrelated phenotypic traits. It also provides a computational framework for predicting Prakriti classes from phenotypic attributes. This approach may be useful in precision medicine for stratification of endophenotypes in healthy and diseased populations.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0185380</identifier><identifier>PMID: 28981546</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Artificial intelligence ; Ayurvedic medicine ; Biology ; Biology and Life Sciences ; Cluster analysis ; Clustering ; Clusters ; Computer and Information Sciences ; Computer applications ; Constitution ; Disease Susceptibility ; DNA methylation ; Generalized linear models ; Genomes ; Genomics ; Hospitals ; Humans ; India ; Informatics ; Learning algorithms ; Machine Learning ; Mathematical models ; Medicine ; Medicine and Health Sciences ; Medicine, Ayurvedic ; Methods ; People and Places ; Phenotype ; Phenotypes ; Physiology ; Population genetics ; Precision Medicine ; Principal components analysis ; Research and Analysis Methods ; Surveys and Questionnaires</subject><ispartof>PloS one, 2017-10, Vol.12 (10), p.e0185380-e0185380</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Tiwari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Tiwari et al 2017 Tiwari et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-22843734cc2dea3e9dd07661baf1bf4a586ceeeb137daf52e916cfe87d76a36c3</citedby><cites>FETCH-LOGICAL-c692t-22843734cc2dea3e9dd07661baf1bf4a586ceeeb137daf52e916cfe87d76a36c3</cites><orcidid>0000-0003-4185-4400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628820/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628820/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28981546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiwari, Pradeep</creatorcontrib><creatorcontrib>Kutum, Rintu</creatorcontrib><creatorcontrib>Sethi, Tavpritesh</creatorcontrib><creatorcontrib>Shrivastava, Ankita</creatorcontrib><creatorcontrib>Girase, Bhushan</creatorcontrib><creatorcontrib>Aggarwal, Shilpi</creatorcontrib><creatorcontrib>Patil, Rutuja</creatorcontrib><creatorcontrib>Agarwal, Dhiraj</creatorcontrib><creatorcontrib>Gautam, Pramod</creatorcontrib><creatorcontrib>Agrawal, Anurag</creatorcontrib><creatorcontrib>Dash, Debasis</creatorcontrib><creatorcontrib>Ghosh, Saurabh</creatorcontrib><creatorcontrib>Juvekar, Sanjay</creatorcontrib><creatorcontrib>Mukerji, Mitali</creatorcontrib><creatorcontrib>Prasher, Bhavana</creatorcontrib><title>Recapitulation of Ayurveda constitution types by machine learning of phenotypic traits</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In Ayurveda system of medicine individuals are classified into seven constitution types, "Prakriti", for assessing disease susceptibility and drug responsiveness. Prakriti evaluation involves clinical examination including questions about physiological and behavioural traits. A need was felt to develop models for accurately predicting Prakriti classes that have been shown to exhibit molecular differences. The present study was carried out on data of phenotypic attributes in 147 healthy individuals of three extreme Prakriti types, from a genetically homogeneous population of Western India. Unsupervised and supervised machine learning approaches were used to infer inherent structure of the data, and for feature selection and building classification models for Prakriti respectively. These models were validated in a North Indian population. Unsupervised clustering led to emergence of three natural clusters corresponding to three extreme Prakriti classes. The supervised modelling approaches could classify individuals, with distinct Prakriti types, in the training and validation sets. This study is the first to demonstrate that Prakriti types are distinct verifiable clusters within a multidimensional space of multiple interrelated phenotypic traits. It also provides a computational framework for predicting Prakriti classes from phenotypic attributes. This approach may be useful in precision medicine for stratification of endophenotypes in healthy and diseased populations.</description><subject>Artificial intelligence</subject><subject>Ayurvedic medicine</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Computer and Information Sciences</subject><subject>Computer applications</subject><subject>Constitution</subject><subject>Disease Susceptibility</subject><subject>DNA methylation</subject><subject>Generalized linear models</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hospitals</subject><subject>Humans</subject><subject>India</subject><subject>Informatics</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Medicine, Ayurvedic</subject><subject>Methods</subject><subject>People and Places</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Population genetics</subject><subject>Precision Medicine</subject><subject>Principal components analysis</subject><subject>Research and Analysis Methods</subject><subject>Surveys and Questionnaires</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkt9r2zAQx83YWLts_8HYDIOxPSSzLFuWXwah7EegUOi2voqLfEpUFMmz5LL895MTt8SjD0MPFrrPfc93902S1yRbEFqRT7eu7yyYRessLjLCS8qzJ8k5qWk-Z3lGn57cz5IX3t9mWWQYe56c5bzmpCzYeXJzjRJaHXoDQTubOpUu9313hw2k0lkfYugQCPsWfbrepzuQW20xNQid1XYzpLRbtC4SWqahAx38y-SZAuPx1fidJb--fvl58X1-efVtdbG8nEtW52Ge57ygFS2kzBsEinXTZBVjZA2KrFUBJWcSEdex4QZUmWNNmFTIq6ZiQJmks-TtUbc1zotxJF6Quo4DITRjkVgdicbBrWg7vYNuLxxocXhw3UZAF7Q0KCpSSMUlqKxQBXIKNaIkipM6rxQtqqj1eazWr3fYSLSxWzMRnUas3oqNuxMlyzmPe5glH0aBzv3u0Qex016iMWDR9cN_F7walsQj-u4f9PHuRmoDsQFtlYt15SAqlmUWS3JeDdTiESqeBnc6bhmVju-ThI-ThMgE_BM20HsvVj-u_5-9upmy70_YLYIJW-_MwWF-ChZHUHbO-w7Vw5BJJgb7309DDPYXo_1j2pvTBT0k3fud_gX-1AGr</recordid><startdate>20171005</startdate><enddate>20171005</enddate><creator>Tiwari, Pradeep</creator><creator>Kutum, Rintu</creator><creator>Sethi, Tavpritesh</creator><creator>Shrivastava, Ankita</creator><creator>Girase, Bhushan</creator><creator>Aggarwal, Shilpi</creator><creator>Patil, Rutuja</creator><creator>Agarwal, Dhiraj</creator><creator>Gautam, Pramod</creator><creator>Agrawal, Anurag</creator><creator>Dash, Debasis</creator><creator>Ghosh, Saurabh</creator><creator>Juvekar, Sanjay</creator><creator>Mukerji, Mitali</creator><creator>Prasher, Bhavana</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4185-4400</orcidid></search><sort><creationdate>20171005</creationdate><title>Recapitulation of Ayurveda constitution types by machine learning of phenotypic traits</title><author>Tiwari, Pradeep ; Kutum, Rintu ; Sethi, Tavpritesh ; Shrivastava, Ankita ; Girase, Bhushan ; Aggarwal, Shilpi ; Patil, Rutuja ; Agarwal, Dhiraj ; Gautam, Pramod ; Agrawal, Anurag ; Dash, Debasis ; Ghosh, Saurabh ; Juvekar, Sanjay ; Mukerji, Mitali ; Prasher, Bhavana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-22843734cc2dea3e9dd07661baf1bf4a586ceeeb137daf52e916cfe87d76a36c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Ayurvedic medicine</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Computer and Information Sciences</topic><topic>Computer applications</topic><topic>Constitution</topic><topic>Disease Susceptibility</topic><topic>DNA methylation</topic><topic>Generalized linear models</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hospitals</topic><topic>Humans</topic><topic>India</topic><topic>Informatics</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Medicine, Ayurvedic</topic><topic>Methods</topic><topic>People and Places</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Population genetics</topic><topic>Precision Medicine</topic><topic>Principal components analysis</topic><topic>Research and Analysis Methods</topic><topic>Surveys and Questionnaires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiwari, Pradeep</creatorcontrib><creatorcontrib>Kutum, Rintu</creatorcontrib><creatorcontrib>Sethi, Tavpritesh</creatorcontrib><creatorcontrib>Shrivastava, Ankita</creatorcontrib><creatorcontrib>Girase, Bhushan</creatorcontrib><creatorcontrib>Aggarwal, Shilpi</creatorcontrib><creatorcontrib>Patil, Rutuja</creatorcontrib><creatorcontrib>Agarwal, Dhiraj</creatorcontrib><creatorcontrib>Gautam, Pramod</creatorcontrib><creatorcontrib>Agrawal, Anurag</creatorcontrib><creatorcontrib>Dash, Debasis</creatorcontrib><creatorcontrib>Ghosh, Saurabh</creatorcontrib><creatorcontrib>Juvekar, Sanjay</creatorcontrib><creatorcontrib>Mukerji, Mitali</creatorcontrib><creatorcontrib>Prasher, Bhavana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiwari, Pradeep</au><au>Kutum, Rintu</au><au>Sethi, Tavpritesh</au><au>Shrivastava, Ankita</au><au>Girase, Bhushan</au><au>Aggarwal, Shilpi</au><au>Patil, Rutuja</au><au>Agarwal, Dhiraj</au><au>Gautam, Pramod</au><au>Agrawal, Anurag</au><au>Dash, Debasis</au><au>Ghosh, Saurabh</au><au>Juvekar, Sanjay</au><au>Mukerji, Mitali</au><au>Prasher, Bhavana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recapitulation of Ayurveda constitution types by machine learning of phenotypic traits</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-10-05</date><risdate>2017</risdate><volume>12</volume><issue>10</issue><spage>e0185380</spage><epage>e0185380</epage><pages>e0185380-e0185380</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In Ayurveda system of medicine individuals are classified into seven constitution types, "Prakriti", for assessing disease susceptibility and drug responsiveness. Prakriti evaluation involves clinical examination including questions about physiological and behavioural traits. A need was felt to develop models for accurately predicting Prakriti classes that have been shown to exhibit molecular differences. The present study was carried out on data of phenotypic attributes in 147 healthy individuals of three extreme Prakriti types, from a genetically homogeneous population of Western India. Unsupervised and supervised machine learning approaches were used to infer inherent structure of the data, and for feature selection and building classification models for Prakriti respectively. These models were validated in a North Indian population. Unsupervised clustering led to emergence of three natural clusters corresponding to three extreme Prakriti classes. The supervised modelling approaches could classify individuals, with distinct Prakriti types, in the training and validation sets. This study is the first to demonstrate that Prakriti types are distinct verifiable clusters within a multidimensional space of multiple interrelated phenotypic traits. It also provides a computational framework for predicting Prakriti classes from phenotypic attributes. This approach may be useful in precision medicine for stratification of endophenotypes in healthy and diseased populations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28981546</pmid><doi>10.1371/journal.pone.0185380</doi><tpages>e0185380</tpages><orcidid>https://orcid.org/0000-0003-4185-4400</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-10, Vol.12 (10), p.e0185380-e0185380 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1991851306 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Artificial intelligence Ayurvedic medicine Biology Biology and Life Sciences Cluster analysis Clustering Clusters Computer and Information Sciences Computer applications Constitution Disease Susceptibility DNA methylation Generalized linear models Genomes Genomics Hospitals Humans India Informatics Learning algorithms Machine Learning Mathematical models Medicine Medicine and Health Sciences Medicine, Ayurvedic Methods People and Places Phenotype Phenotypes Physiology Population genetics Precision Medicine Principal components analysis Research and Analysis Methods Surveys and Questionnaires |
title | Recapitulation of Ayurveda constitution types by machine learning of phenotypic traits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recapitulation%20of%20Ayurveda%20constitution%20types%20by%20machine%20learning%20of%20phenotypic%20traits&rft.jtitle=PloS%20one&rft.au=Tiwari,%20Pradeep&rft.date=2017-10-05&rft.volume=12&rft.issue=10&rft.spage=e0185380&rft.epage=e0185380&rft.pages=e0185380-e0185380&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0185380&rft_dat=%3Cgale_plos_%3EA508208876%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1991851306&rft_id=info:pmid/28981546&rft_galeid=A508208876&rft_doaj_id=oai_doaj_org_article_714cf8caf04f4e83a9eec1f81927f347&rfr_iscdi=true |