Estimating population extinction thresholds with categorical classification trees for Louisiana black bears

Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-01, Vol.13 (1), p.e0191435-e0191435
Hauptverfasser: Laufenberg, Jared S, Clark, Joseph D, Chandler, Richard B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0191435
container_issue 1
container_start_page e0191435
container_title PloS one
container_volume 13
creator Laufenberg, Jared S
Clark, Joseph D
Chandler, Richard B
description Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years ([Formula: see text]) was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when [Formula: see text], suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.
doi_str_mv 10.1371/journal.pone.0191435
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1990613082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ed0e6512b6354baea20cb0c458f3c297</doaj_id><sourcerecordid>1990851618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-63d532e88b889332b4bf68285c26032c3978c8bf43a3405bb45d4ea3ad4f00033</originalsourceid><addsrcrecordid>eNptUsFu1DAQjRCIlsIfIIjEhcsutsd2nAsSqgpUWokLnK2x4-x6642DnRT69802adUiTn4av3nzZvSK4i0lawoV_bSPY-owrPvYuTWhNeUgnhWntAa2kozA80f4pHiV854QAUrKl8UJq0ESJeG0uLrIgz_g4Ltt2cd-DBOMXen-ThV7B4ddcnkXQ5PLP37YlRYHt43JWwylDZizbyc8U5NzuWxjKjdx9Nljh6UJaK9K4zDl18WLFkN2b5b3rPj19eLn-ffV5se3y_Mvm5UVTA4rCY0A5pQyStUAzHDTSsWUsEwSYBbqSlllWg4InAhjuGi4Q8CGt4QQgLPi_azbh5j1cqesaV0TSYEoNjEuZ0YTca_7NF0g3eiIXt8VYtpqTIO3wWnXECcFZUaC4AYdMmINsVyoFiyrq0nr8zJtNAfXWNcNCcMT0ac_nd_pbbzWoqpqKY92Py4CKf4eXR70wWfrQsDOxXH2rQSVVE3UD_9Q_78dn1k2xZyTax_MUKKP2bnv0sfs6CU7U9u7x4s8NN2HBW4BjHvEWA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990613082</pqid></control><display><type>article</type><title>Estimating population extinction thresholds with categorical classification trees for Louisiana black bears</title><source>MEDLINE</source><source>Public Library of Science</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Laufenberg, Jared S ; Clark, Joseph D ; Chandler, Richard B</creator><contributor>Festa-Bianchet, Marco</contributor><creatorcontrib>Laufenberg, Jared S ; Clark, Joseph D ; Chandler, Richard B ; Festa-Bianchet, Marco</creatorcontrib><description>Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years ([Formula: see text]) was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when [Formula: see text], suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0191435</identifier><identifier>PMID: 29360863</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Bears ; Biodiversity ; Bioinformatics ; Biology and Life Sciences ; Biometrics ; Capture-recapture studies ; Clark, Richard B ; Classification ; Computer Simulation ; Conservation ; Conservation of Natural Resources ; Demographics ; Demography ; Ecological Parameter Monitoring - statistics &amp; numerical data ; Ecology and Environmental Sciences ; Endangered &amp; extinct species ; Endangered Species ; Engineering and Technology ; Environmental monitoring ; Environmental protection ; Extinction ; Extinction, Biological ; Female ; Females ; Fisheries ; Louisiana ; Male ; Methods ; Models, Biological ; Models, Statistical ; Monitoring ; Natural resources ; Parameter estimation ; People and places ; Population Dynamics - statistics &amp; numerical data ; Population statistics ; Population viability ; Research and Analysis Methods ; Sensitivity analysis ; Software ; Species extinction ; Stochastic Processes ; Stochasticity ; Survival ; Threatened species ; Thresholds ; Trees ; Ursidae ; Ursus americanus ; Ursus americanus luteolus ; Wildlife conservation</subject><ispartof>PloS one, 2018-01, Vol.13 (1), p.e0191435-e0191435</ispartof><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-63d532e88b889332b4bf68285c26032c3978c8bf43a3405bb45d4ea3ad4f00033</citedby><cites>FETCH-LOGICAL-c526t-63d532e88b889332b4bf68285c26032c3978c8bf43a3405bb45d4ea3ad4f00033</cites><orcidid>0000-0002-8547-8112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779663/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779663/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29360863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Festa-Bianchet, Marco</contributor><creatorcontrib>Laufenberg, Jared S</creatorcontrib><creatorcontrib>Clark, Joseph D</creatorcontrib><creatorcontrib>Chandler, Richard B</creatorcontrib><title>Estimating population extinction thresholds with categorical classification trees for Louisiana black bears</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years ([Formula: see text]) was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when [Formula: see text], suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.</description><subject>Animals</subject><subject>Bears</subject><subject>Biodiversity</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Biometrics</subject><subject>Capture-recapture studies</subject><subject>Clark, Richard B</subject><subject>Classification</subject><subject>Computer Simulation</subject><subject>Conservation</subject><subject>Conservation of Natural Resources</subject><subject>Demographics</subject><subject>Demography</subject><subject>Ecological Parameter Monitoring - statistics &amp; numerical data</subject><subject>Ecology and Environmental Sciences</subject><subject>Endangered &amp; extinct species</subject><subject>Endangered Species</subject><subject>Engineering and Technology</subject><subject>Environmental monitoring</subject><subject>Environmental protection</subject><subject>Extinction</subject><subject>Extinction, Biological</subject><subject>Female</subject><subject>Females</subject><subject>Fisheries</subject><subject>Louisiana</subject><subject>Male</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Monitoring</subject><subject>Natural resources</subject><subject>Parameter estimation</subject><subject>People and places</subject><subject>Population Dynamics - statistics &amp; numerical data</subject><subject>Population statistics</subject><subject>Population viability</subject><subject>Research and Analysis Methods</subject><subject>Sensitivity analysis</subject><subject>Software</subject><subject>Species extinction</subject><subject>Stochastic Processes</subject><subject>Stochasticity</subject><subject>Survival</subject><subject>Threatened species</subject><subject>Thresholds</subject><subject>Trees</subject><subject>Ursidae</subject><subject>Ursus americanus</subject><subject>Ursus americanus luteolus</subject><subject>Wildlife conservation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFu1DAQjRCIlsIfIIjEhcsutsd2nAsSqgpUWokLnK2x4-x6642DnRT69802adUiTn4av3nzZvSK4i0lawoV_bSPY-owrPvYuTWhNeUgnhWntAa2kozA80f4pHiV854QAUrKl8UJq0ESJeG0uLrIgz_g4Ltt2cd-DBOMXen-ThV7B4ddcnkXQ5PLP37YlRYHt43JWwylDZizbyc8U5NzuWxjKjdx9Nljh6UJaK9K4zDl18WLFkN2b5b3rPj19eLn-ffV5se3y_Mvm5UVTA4rCY0A5pQyStUAzHDTSsWUsEwSYBbqSlllWg4InAhjuGi4Q8CGt4QQgLPi_azbh5j1cqesaV0TSYEoNjEuZ0YTca_7NF0g3eiIXt8VYtpqTIO3wWnXECcFZUaC4AYdMmINsVyoFiyrq0nr8zJtNAfXWNcNCcMT0ac_nd_pbbzWoqpqKY92Py4CKf4eXR70wWfrQsDOxXH2rQSVVE3UD_9Q_78dn1k2xZyTax_MUKKP2bnv0sfs6CU7U9u7x4s8NN2HBW4BjHvEWA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Laufenberg, Jared S</creator><creator>Clark, Joseph D</creator><creator>Chandler, Richard B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8547-8112</orcidid></search><sort><creationdate>20180101</creationdate><title>Estimating population extinction thresholds with categorical classification trees for Louisiana black bears</title><author>Laufenberg, Jared S ; Clark, Joseph D ; Chandler, Richard B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-63d532e88b889332b4bf68285c26032c3978c8bf43a3405bb45d4ea3ad4f00033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Bears</topic><topic>Biodiversity</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Biometrics</topic><topic>Capture-recapture studies</topic><topic>Clark, Richard B</topic><topic>Classification</topic><topic>Computer Simulation</topic><topic>Conservation</topic><topic>Conservation of Natural Resources</topic><topic>Demographics</topic><topic>Demography</topic><topic>Ecological Parameter Monitoring - statistics &amp; numerical data</topic><topic>Ecology and Environmental Sciences</topic><topic>Endangered &amp; extinct species</topic><topic>Endangered Species</topic><topic>Engineering and Technology</topic><topic>Environmental monitoring</topic><topic>Environmental protection</topic><topic>Extinction</topic><topic>Extinction, Biological</topic><topic>Female</topic><topic>Females</topic><topic>Fisheries</topic><topic>Louisiana</topic><topic>Male</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Monitoring</topic><topic>Natural resources</topic><topic>Parameter estimation</topic><topic>People and places</topic><topic>Population Dynamics - statistics &amp; numerical data</topic><topic>Population statistics</topic><topic>Population viability</topic><topic>Research and Analysis Methods</topic><topic>Sensitivity analysis</topic><topic>Software</topic><topic>Species extinction</topic><topic>Stochastic Processes</topic><topic>Stochasticity</topic><topic>Survival</topic><topic>Threatened species</topic><topic>Thresholds</topic><topic>Trees</topic><topic>Ursidae</topic><topic>Ursus americanus</topic><topic>Ursus americanus luteolus</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laufenberg, Jared S</creatorcontrib><creatorcontrib>Clark, Joseph D</creatorcontrib><creatorcontrib>Chandler, Richard B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laufenberg, Jared S</au><au>Clark, Joseph D</au><au>Chandler, Richard B</au><au>Festa-Bianchet, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating population extinction thresholds with categorical classification trees for Louisiana black bears</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>13</volume><issue>1</issue><spage>e0191435</spage><epage>e0191435</epage><pages>e0191435-e0191435</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years ([Formula: see text]) was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when [Formula: see text], suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29360863</pmid><doi>10.1371/journal.pone.0191435</doi><orcidid>https://orcid.org/0000-0002-8547-8112</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-01, Vol.13 (1), p.e0191435-e0191435
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1990613082
source MEDLINE; Public Library of Science; Full-Text Journals in Chemistry (Open access); PubMed Central; Directory of Open Access Journals; EZB Electronic Journals Library
subjects Animals
Bears
Biodiversity
Bioinformatics
Biology and Life Sciences
Biometrics
Capture-recapture studies
Clark, Richard B
Classification
Computer Simulation
Conservation
Conservation of Natural Resources
Demographics
Demography
Ecological Parameter Monitoring - statistics & numerical data
Ecology and Environmental Sciences
Endangered & extinct species
Endangered Species
Engineering and Technology
Environmental monitoring
Environmental protection
Extinction
Extinction, Biological
Female
Females
Fisheries
Louisiana
Male
Methods
Models, Biological
Models, Statistical
Monitoring
Natural resources
Parameter estimation
People and places
Population Dynamics - statistics & numerical data
Population statistics
Population viability
Research and Analysis Methods
Sensitivity analysis
Software
Species extinction
Stochastic Processes
Stochasticity
Survival
Threatened species
Thresholds
Trees
Ursidae
Ursus americanus
Ursus americanus luteolus
Wildlife conservation
title Estimating population extinction thresholds with categorical classification trees for Louisiana black bears
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20population%20extinction%20thresholds%20with%20categorical%20classification%20trees%20for%20Louisiana%20black%20bears&rft.jtitle=PloS%20one&rft.au=Laufenberg,%20Jared%20S&rft.date=2018-01-01&rft.volume=13&rft.issue=1&rft.spage=e0191435&rft.epage=e0191435&rft.pages=e0191435-e0191435&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0191435&rft_dat=%3Cproquest_plos_%3E1990851618%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990613082&rft_id=info:pmid/29360863&rft_doaj_id=oai_doaj_org_article_ed0e6512b6354baea20cb0c458f3c297&rfr_iscdi=true