Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway

Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-04, Vol.12 (4), p.e0176070-e0176070
Hauptverfasser: Kadota, Yoshito, Toriuchi, Yuriko, Aki, Yuka, Mizuno, Yuto, Kawakami, Takashige, Nakaya, Tomoko, Sato, Masao, Suzuki, Shinya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0176070
container_issue 4
container_start_page e0176070
container_title PloS one
container_volume 12
creator Kadota, Yoshito
Toriuchi, Yuriko
Aki, Yuka
Mizuno, Yuto
Kawakami, Takashige
Nakaya, Tomoko
Sato, Masao
Suzuki, Shinya
description Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes.
doi_str_mv 10.1371/journal.pone.0176070
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1990004735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_19949ac5edb748e99ebef3d0ce8eeffa</doaj_id><sourcerecordid>1990004735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-60f6eca431ea44b0f95cf1f63f7de9d8d005d74c8de297ec6f67217236be9893</originalsourceid><addsrcrecordid>eNptkktv3CAUha2qVZOm_QdVa6mbbjwFg8FsKlVRH5Gm6mb2CMPFw4gxU8Cp8u_LZJwoibICwTnffehU1XuMVphw_GUX5jgpvzqECVYIc4Y4elGdY0HahrWIvHxwP6vepLRDqCM9Y6-rs7anLeOYnFe735CV9yFvXeG4KdURxtmrDHXeQq2MO4QRJqdr46yFCFN2KhdtHWxNNqRZ41qD96m-durWUhizd1Od3Fjac9NYH1Te_lM3b6tXVvkE75bzotr8-L65_NWs__y8uvy2bnTXstwwZBloRQkGRemArOi0xZYRyw0I05syhuFU9wZawUEzy3iLeUvYAKIX5KL6eMIefEhy2VKSWAiEEOWkK4qrk8IEtZOH6PYq3signLx9CHGUKmanPRxdVCjdgRk47UEIGMASgzT0ANaqwvq6VJuHPRhd9hOVfwR9_DO5rRzDteyI6BnGBfB5AcTwd4aU5d6l40bVBGEuffcC45b3lBbppyfS56ejJ5WOIaUI9r4ZjOQxOXcueUyOXJJTbB8eDnJvuosK-Q_OBsRk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990004735</pqid></control><display><type>article</type><title>Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kadota, Yoshito ; Toriuchi, Yuriko ; Aki, Yuka ; Mizuno, Yuto ; Kawakami, Takashige ; Nakaya, Tomoko ; Sato, Masao ; Suzuki, Shinya</creator><contributor>Óvilo, Cristina</contributor><creatorcontrib>Kadota, Yoshito ; Toriuchi, Yuriko ; Aki, Yuka ; Mizuno, Yuto ; Kawakami, Takashige ; Nakaya, Tomoko ; Sato, Masao ; Suzuki, Shinya ; Óvilo, Cristina</creatorcontrib><description>Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0176070</identifier><identifier>PMID: 28426713</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1-Phosphatidylinositol 3-kinase ; 3T3-L1 Cells ; Accumulation ; Acetylcysteine ; Adipocytes ; Adipose tissue ; Adipose Tissue - cytology ; AKT protein ; Animals ; Antioxidants ; Biology and life sciences ; Body fat ; Body weight ; Cell cycle ; Cell Differentiation - physiology ; Culture Media ; Diabetes ; Differentiation ; Endoplasmic reticulum ; Enzyme inhibitors ; Gene expression ; Gene silencing ; Genes ; High fat diet ; Hypoxia ; Insulin ; Insulin - metabolism ; Insulin resistance ; Kinases ; Lactation ; Leukemia ; Medicine and Health Sciences ; Metabolic disorders ; Metallothionein ; Metallothionein - genetics ; Metallothionein - physiology ; Metallothioneins ; Metals ; Mice ; Mice, Knockout ; Obesity ; Pharmaceutical sciences ; Phosphorylation ; Preadipocytes ; Proteins ; Ribonucleic acid ; RNA ; Rodents ; Signal Transduction ; Signaling ; siRNA</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0176070-e0176070</ispartof><rights>2017 Kadota et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Kadota et al 2017 Kadota et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-60f6eca431ea44b0f95cf1f63f7de9d8d005d74c8de297ec6f67217236be9893</citedby><cites>FETCH-LOGICAL-c526t-60f6eca431ea44b0f95cf1f63f7de9d8d005d74c8de297ec6f67217236be9893</cites><orcidid>0000-0002-2721-4100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398611/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398611/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28426713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Óvilo, Cristina</contributor><creatorcontrib>Kadota, Yoshito</creatorcontrib><creatorcontrib>Toriuchi, Yuriko</creatorcontrib><creatorcontrib>Aki, Yuka</creatorcontrib><creatorcontrib>Mizuno, Yuto</creatorcontrib><creatorcontrib>Kawakami, Takashige</creatorcontrib><creatorcontrib>Nakaya, Tomoko</creatorcontrib><creatorcontrib>Sato, Masao</creatorcontrib><creatorcontrib>Suzuki, Shinya</creatorcontrib><title>Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>3T3-L1 Cells</subject><subject>Accumulation</subject><subject>Acetylcysteine</subject><subject>Adipocytes</subject><subject>Adipose tissue</subject><subject>Adipose Tissue - cytology</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Biology and life sciences</subject><subject>Body fat</subject><subject>Body weight</subject><subject>Cell cycle</subject><subject>Cell Differentiation - physiology</subject><subject>Culture Media</subject><subject>Diabetes</subject><subject>Differentiation</subject><subject>Endoplasmic reticulum</subject><subject>Enzyme inhibitors</subject><subject>Gene expression</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>High fat diet</subject><subject>Hypoxia</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin resistance</subject><subject>Kinases</subject><subject>Lactation</subject><subject>Leukemia</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic disorders</subject><subject>Metallothionein</subject><subject>Metallothionein - genetics</subject><subject>Metallothionein - physiology</subject><subject>Metallothioneins</subject><subject>Metals</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Obesity</subject><subject>Pharmaceutical sciences</subject><subject>Phosphorylation</subject><subject>Preadipocytes</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>siRNA</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv3CAUha2qVZOm_QdVa6mbbjwFg8FsKlVRH5Gm6mb2CMPFw4gxU8Cp8u_LZJwoibICwTnffehU1XuMVphw_GUX5jgpvzqECVYIc4Y4elGdY0HahrWIvHxwP6vepLRDqCM9Y6-rs7anLeOYnFe735CV9yFvXeG4KdURxtmrDHXeQq2MO4QRJqdr46yFCFN2KhdtHWxNNqRZ41qD96m-durWUhizd1Od3Fjac9NYH1Te_lM3b6tXVvkE75bzotr8-L65_NWs__y8uvy2bnTXstwwZBloRQkGRemArOi0xZYRyw0I05syhuFU9wZawUEzy3iLeUvYAKIX5KL6eMIefEhy2VKSWAiEEOWkK4qrk8IEtZOH6PYq3signLx9CHGUKmanPRxdVCjdgRk47UEIGMASgzT0ANaqwvq6VJuHPRhd9hOVfwR9_DO5rRzDteyI6BnGBfB5AcTwd4aU5d6l40bVBGEuffcC45b3lBbppyfS56ejJ5WOIaUI9r4ZjOQxOXcueUyOXJJTbB8eDnJvuosK-Q_OBsRk</recordid><startdate>20170420</startdate><enddate>20170420</enddate><creator>Kadota, Yoshito</creator><creator>Toriuchi, Yuriko</creator><creator>Aki, Yuka</creator><creator>Mizuno, Yuto</creator><creator>Kawakami, Takashige</creator><creator>Nakaya, Tomoko</creator><creator>Sato, Masao</creator><creator>Suzuki, Shinya</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2721-4100</orcidid></search><sort><creationdate>20170420</creationdate><title>Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway</title><author>Kadota, Yoshito ; Toriuchi, Yuriko ; Aki, Yuka ; Mizuno, Yuto ; Kawakami, Takashige ; Nakaya, Tomoko ; Sato, Masao ; Suzuki, Shinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-60f6eca431ea44b0f95cf1f63f7de9d8d005d74c8de297ec6f67217236be9893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>3T3-L1 Cells</topic><topic>Accumulation</topic><topic>Acetylcysteine</topic><topic>Adipocytes</topic><topic>Adipose tissue</topic><topic>Adipose Tissue - cytology</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Biology and life sciences</topic><topic>Body fat</topic><topic>Body weight</topic><topic>Cell cycle</topic><topic>Cell Differentiation - physiology</topic><topic>Culture Media</topic><topic>Diabetes</topic><topic>Differentiation</topic><topic>Endoplasmic reticulum</topic><topic>Enzyme inhibitors</topic><topic>Gene expression</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>High fat diet</topic><topic>Hypoxia</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin resistance</topic><topic>Kinases</topic><topic>Lactation</topic><topic>Leukemia</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic disorders</topic><topic>Metallothionein</topic><topic>Metallothionein - genetics</topic><topic>Metallothionein - physiology</topic><topic>Metallothioneins</topic><topic>Metals</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Obesity</topic><topic>Pharmaceutical sciences</topic><topic>Phosphorylation</topic><topic>Preadipocytes</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>siRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadota, Yoshito</creatorcontrib><creatorcontrib>Toriuchi, Yuriko</creatorcontrib><creatorcontrib>Aki, Yuka</creatorcontrib><creatorcontrib>Mizuno, Yuto</creatorcontrib><creatorcontrib>Kawakami, Takashige</creatorcontrib><creatorcontrib>Nakaya, Tomoko</creatorcontrib><creatorcontrib>Sato, Masao</creatorcontrib><creatorcontrib>Suzuki, Shinya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadota, Yoshito</au><au>Toriuchi, Yuriko</au><au>Aki, Yuka</au><au>Mizuno, Yuto</au><au>Kawakami, Takashige</au><au>Nakaya, Tomoko</au><au>Sato, Masao</au><au>Suzuki, Shinya</au><au>Óvilo, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-20</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0176070</spage><epage>e0176070</epage><pages>e0176070-e0176070</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28426713</pmid><doi>10.1371/journal.pone.0176070</doi><orcidid>https://orcid.org/0000-0002-2721-4100</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-04, Vol.12 (4), p.e0176070-e0176070
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1990004735
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 1-Phosphatidylinositol 3-kinase
3T3-L1 Cells
Accumulation
Acetylcysteine
Adipocytes
Adipose tissue
Adipose Tissue - cytology
AKT protein
Animals
Antioxidants
Biology and life sciences
Body fat
Body weight
Cell cycle
Cell Differentiation - physiology
Culture Media
Diabetes
Differentiation
Endoplasmic reticulum
Enzyme inhibitors
Gene expression
Gene silencing
Genes
High fat diet
Hypoxia
Insulin
Insulin - metabolism
Insulin resistance
Kinases
Lactation
Leukemia
Medicine and Health Sciences
Metabolic disorders
Metallothionein
Metallothionein - genetics
Metallothionein - physiology
Metallothioneins
Metals
Mice
Mice, Knockout
Obesity
Pharmaceutical sciences
Phosphorylation
Preadipocytes
Proteins
Ribonucleic acid
RNA
Rodents
Signal Transduction
Signaling
siRNA
title Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metallothioneins%20regulate%20the%20adipogenic%20differentiation%20of%203T3-L1%20cells%20via%20the%20insulin%20signaling%20pathway&rft.jtitle=PloS%20one&rft.au=Kadota,%20Yoshito&rft.date=2017-04-20&rft.volume=12&rft.issue=4&rft.spage=e0176070&rft.epage=e0176070&rft.pages=e0176070-e0176070&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0176070&rft_dat=%3Cproquest_plos_%3E1990004735%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990004735&rft_id=info:pmid/28426713&rft_doaj_id=oai_doaj_org_article_19949ac5edb748e99ebef3d0ce8eeffa&rfr_iscdi=true