Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data
The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require a...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-04, Vol.12 (4), p.e0176114-e0176114 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0176114 |
---|---|
container_issue | 4 |
container_start_page | e0176114 |
container_title | PloS one |
container_volume | 12 |
creator | González-Ferreiro, Eduardo Arellano-Pérez, Stéfano Castedo-Dorado, Fernando Hevia, Andrea Vega, José Antonio Vega-Nieva, Daniel Álvarez-González, Juan Gabriel Ruiz-González, Ana Daría |
description | The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard. |
doi_str_mv | 10.1371/journal.pone.0176114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1989977286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1cbbd042bae4418683d479ba9624379d</doaj_id><sourcerecordid>1893550772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-a71c61c57c2a9b00a8c5ff7d7192f44f4411eb381dffab7f3f3519dc6f3eb2453</originalsourceid><addsrcrecordid>eNptUkuLFDEYbERx19V_IBrw4qXHvDrpXARZfCyseNFzyHM2QyYZk-6ROfvHTTuzy64Igbyq6vtSqa57ieAKEY7ebfJckoqrXU5uBRFnCNFH3TkSBPcMQ_L43vqse1brBsKBjIw97c7wSOk4YHre_f6arYsxpDWYbhzYuzIFoyKwoU4l6HkKOYHsgVEp7w7Azy6CmJUFc104SS2Ahve5uDqBkPYuTbkcgEq2AX_11qUaprYPRbdOQVTVFVCbXloErJrU8-6JV7G6F6f5ovvx6eP3yy_99bfPV5cfrnszYDb1iiPDkBm4wUpoCNVoBu-55UhgT2kbCDlNRmS9V5p74smAhDXME6cxHchF9_qou4u5ypN_VSIxCsE5HllDXB0RNquN3JWwVeUgswry70Eua6kWg6KTyGhtIcVauVZ4ZCOxlAutBMOUcGGb1vtTtVlvnTXNl6LiA9GHNyncyHXey4FCzjBvAm9PAiX_nJu7chuqaZ-lkstz63sUZBhg67xB3_wD_f_r6BFlSq61OH_XDIJyydQtSy6ZkqdMNdqr-w-5I92GiPwBoOPN5Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989977286</pqid></control><display><type>article</type><title>Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>González-Ferreiro, Eduardo ; Arellano-Pérez, Stéfano ; Castedo-Dorado, Fernando ; Hevia, Andrea ; Vega, José Antonio ; Vega-Nieva, Daniel ; Álvarez-González, Juan Gabriel ; Ruiz-González, Ana Daría</creator><creatorcontrib>González-Ferreiro, Eduardo ; Arellano-Pérez, Stéfano ; Castedo-Dorado, Fernando ; Hevia, Andrea ; Vega, José Antonio ; Vega-Nieva, Daniel ; Álvarez-González, Juan Gabriel ; Ruiz-González, Ana Daría</creatorcontrib><description>The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0176114</identifier><identifier>PMID: 28448524</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Airborne lasers ; Biology and Life Sciences ; Biomass ; Bulk density ; Canopies ; Complex variables ; Conservation of Natural Resources ; Density ; Ecology and Environmental Sciences ; Engineering and Technology ; Fire hazards ; Fires ; Forest & brush fires ; Forest management ; Forestry ; Forestry - methods ; Forests ; Fuels ; Lasers ; Load distribution ; Load distribution (forces) ; Mathematical models ; Modelling ; Models, Theoretical ; People and Places ; Physical Sciences ; Pine ; Pinus - growth & development ; Pinus pinaster ; Pinus radiata ; Probability density function ; Probability density functions ; Remote sensing ; Scanning ; Stress concentration ; Trees ; Variables ; Vertical distribution</subject><ispartof>PloS one, 2017-04, Vol.12 (4), p.e0176114-e0176114</ispartof><rights>2017 González-Ferreiro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 González-Ferreiro et al 2017 González-Ferreiro et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-a71c61c57c2a9b00a8c5ff7d7192f44f4411eb381dffab7f3f3519dc6f3eb2453</citedby><cites>FETCH-LOGICAL-c526t-a71c61c57c2a9b00a8c5ff7d7192f44f4411eb381dffab7f3f3519dc6f3eb2453</cites><orcidid>0000-0002-5206-9128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407627/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407627/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28448524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Ferreiro, Eduardo</creatorcontrib><creatorcontrib>Arellano-Pérez, Stéfano</creatorcontrib><creatorcontrib>Castedo-Dorado, Fernando</creatorcontrib><creatorcontrib>Hevia, Andrea</creatorcontrib><creatorcontrib>Vega, José Antonio</creatorcontrib><creatorcontrib>Vega-Nieva, Daniel</creatorcontrib><creatorcontrib>Álvarez-González, Juan Gabriel</creatorcontrib><creatorcontrib>Ruiz-González, Ana Daría</creatorcontrib><title>Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.</description><subject>Airborne lasers</subject><subject>Biology and Life Sciences</subject><subject>Biomass</subject><subject>Bulk density</subject><subject>Canopies</subject><subject>Complex variables</subject><subject>Conservation of Natural Resources</subject><subject>Density</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering and Technology</subject><subject>Fire hazards</subject><subject>Fires</subject><subject>Forest & brush fires</subject><subject>Forest management</subject><subject>Forestry</subject><subject>Forestry - methods</subject><subject>Forests</subject><subject>Fuels</subject><subject>Lasers</subject><subject>Load distribution</subject><subject>Load distribution (forces)</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Models, Theoretical</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Pine</subject><subject>Pinus - growth & development</subject><subject>Pinus pinaster</subject><subject>Pinus radiata</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Remote sensing</subject><subject>Scanning</subject><subject>Stress concentration</subject><subject>Trees</subject><subject>Variables</subject><subject>Vertical distribution</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUkuLFDEYbERx19V_IBrw4qXHvDrpXARZfCyseNFzyHM2QyYZk-6ROfvHTTuzy64Igbyq6vtSqa57ieAKEY7ebfJckoqrXU5uBRFnCNFH3TkSBPcMQ_L43vqse1brBsKBjIw97c7wSOk4YHre_f6arYsxpDWYbhzYuzIFoyKwoU4l6HkKOYHsgVEp7w7Azy6CmJUFc104SS2Ahve5uDqBkPYuTbkcgEq2AX_11qUaprYPRbdOQVTVFVCbXloErJrU8-6JV7G6F6f5ovvx6eP3yy_99bfPV5cfrnszYDb1iiPDkBm4wUpoCNVoBu-55UhgT2kbCDlNRmS9V5p74smAhDXME6cxHchF9_qou4u5ypN_VSIxCsE5HllDXB0RNquN3JWwVeUgswry70Eua6kWg6KTyGhtIcVauVZ4ZCOxlAutBMOUcGGb1vtTtVlvnTXNl6LiA9GHNyncyHXey4FCzjBvAm9PAiX_nJu7chuqaZ-lkstz63sUZBhg67xB3_wD_f_r6BFlSq61OH_XDIJyydQtSy6ZkqdMNdqr-w-5I92GiPwBoOPN5Q</recordid><startdate>20170427</startdate><enddate>20170427</enddate><creator>González-Ferreiro, Eduardo</creator><creator>Arellano-Pérez, Stéfano</creator><creator>Castedo-Dorado, Fernando</creator><creator>Hevia, Andrea</creator><creator>Vega, José Antonio</creator><creator>Vega-Nieva, Daniel</creator><creator>Álvarez-González, Juan Gabriel</creator><creator>Ruiz-González, Ana Daría</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5206-9128</orcidid></search><sort><creationdate>20170427</creationdate><title>Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data</title><author>González-Ferreiro, Eduardo ; Arellano-Pérez, Stéfano ; Castedo-Dorado, Fernando ; Hevia, Andrea ; Vega, José Antonio ; Vega-Nieva, Daniel ; Álvarez-González, Juan Gabriel ; Ruiz-González, Ana Daría</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-a71c61c57c2a9b00a8c5ff7d7192f44f4411eb381dffab7f3f3519dc6f3eb2453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Airborne lasers</topic><topic>Biology and Life Sciences</topic><topic>Biomass</topic><topic>Bulk density</topic><topic>Canopies</topic><topic>Complex variables</topic><topic>Conservation of Natural Resources</topic><topic>Density</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering and Technology</topic><topic>Fire hazards</topic><topic>Fires</topic><topic>Forest & brush fires</topic><topic>Forest management</topic><topic>Forestry</topic><topic>Forestry - methods</topic><topic>Forests</topic><topic>Fuels</topic><topic>Lasers</topic><topic>Load distribution</topic><topic>Load distribution (forces)</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Models, Theoretical</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Pine</topic><topic>Pinus - growth & development</topic><topic>Pinus pinaster</topic><topic>Pinus radiata</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Remote sensing</topic><topic>Scanning</topic><topic>Stress concentration</topic><topic>Trees</topic><topic>Variables</topic><topic>Vertical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Ferreiro, Eduardo</creatorcontrib><creatorcontrib>Arellano-Pérez, Stéfano</creatorcontrib><creatorcontrib>Castedo-Dorado, Fernando</creatorcontrib><creatorcontrib>Hevia, Andrea</creatorcontrib><creatorcontrib>Vega, José Antonio</creatorcontrib><creatorcontrib>Vega-Nieva, Daniel</creatorcontrib><creatorcontrib>Álvarez-González, Juan Gabriel</creatorcontrib><creatorcontrib>Ruiz-González, Ana Daría</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Ferreiro, Eduardo</au><au>Arellano-Pérez, Stéfano</au><au>Castedo-Dorado, Fernando</au><au>Hevia, Andrea</au><au>Vega, José Antonio</au><au>Vega-Nieva, Daniel</au><au>Álvarez-González, Juan Gabriel</au><au>Ruiz-González, Ana Daría</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-04-27</date><risdate>2017</risdate><volume>12</volume><issue>4</issue><spage>e0176114</spage><epage>e0176114</epage><pages>e0176114-e0176114</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28448524</pmid><doi>10.1371/journal.pone.0176114</doi><orcidid>https://orcid.org/0000-0002-5206-9128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-04, Vol.12 (4), p.e0176114-e0176114 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1989977286 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Airborne lasers Biology and Life Sciences Biomass Bulk density Canopies Complex variables Conservation of Natural Resources Density Ecology and Environmental Sciences Engineering and Technology Fire hazards Fires Forest & brush fires Forest management Forestry Forestry - methods Forests Fuels Lasers Load distribution Load distribution (forces) Mathematical models Modelling Models, Theoretical People and Places Physical Sciences Pine Pinus - growth & development Pinus pinaster Pinus radiata Probability density function Probability density functions Remote sensing Scanning Stress concentration Trees Variables Vertical distribution |
title | Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airbone laser scanning data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20vertical%20distribution%20of%20canopy%20fuel%20load%20using%20national%20forest%20inventory%20and%20low-density%20airbone%20laser%20scanning%20data&rft.jtitle=PloS%20one&rft.au=Gonz%C3%A1lez-Ferreiro,%20Eduardo&rft.date=2017-04-27&rft.volume=12&rft.issue=4&rft.spage=e0176114&rft.epage=e0176114&rft.pages=e0176114-e0176114&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0176114&rft_dat=%3Cproquest_plos_%3E1893550772%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989977286&rft_id=info:pmid/28448524&rft_doaj_id=oai_doaj_org_article_1cbbd042bae4418683d479ba9624379d&rfr_iscdi=true |