Signaling Properties of Chemerin Receptors CMKLR1, GPR1 and CCRL2
Chemerin is a small chemotactic protein originally identified as the natural ligand of CMKLR1. More recently, two other receptors, GPR1 and CCRL2, have been reported to bind chemerin but their functional relevance remains poorly understood. In this study, we compared the binding and signaling proper...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-10, Vol.11 (10), p.e0164179-e0164179 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0164179 |
---|---|
container_issue | 10 |
container_start_page | e0164179 |
container_title | PloS one |
container_volume | 11 |
creator | De Henau, Olivier Degroot, Gaetan-Nagim Imbault, Virginie Robert, Virginie De Poorter, Cédric Mcheik, Saria Galés, Céline Parmentier, Marc Springael, Jean-Yves |
description | Chemerin is a small chemotactic protein originally identified as the natural ligand of CMKLR1. More recently, two other receptors, GPR1 and CCRL2, have been reported to bind chemerin but their functional relevance remains poorly understood. In this study, we compared the binding and signaling properties of the three human chemerin receptors and showed differences in mode of chemerin binding and receptor signaling. Chemerin binds to all three receptors with low nanomolar affinities. However, the contribution of the chemerin C-terminus to binding efficiency varies greatly amongst receptors. By using BRET-based biosensors monitoring the activation of various G proteins, we showed that binding of chemerin and the chemerin 9 nonapeptide (149YFPGQFAFS157) to CMKLR1 activates the three Gαi subtypes (Gαi1, Gαi2 and Gαi3) and the two Gαo isoforms (Gαoa and Gαob) with potencies correlated to binding affinities. In contrast, no significant activation of G proteins was detected upon binding of chemerin to GPR1 or CCRL2. Binding of chemerin and the chemerin 9 peptide also induced the recruitment of β-arrestin1 and 2 to CMKLR1 and GPR1, though to various degree, but not to CCRL2. However, the propensity of chemerin 9 to activate β-arrestins relative to chemerin is higher when bound to GPR1. Finally, we showed that binding of chemerin to CMKLR1 and GPR1 promotes also the internalization of the two receptors and the phosphorylation of ERK1/2 MAP kinases, although with a different efficiency, and that phosphorylation of ERK1/2 requires both Gαi/o and β-arrestin2 activation but not β-arrestin1. Collectively, these data support a model in which each chemerin receptor displays selective signaling properties. |
doi_str_mv | 10.1371/journal.pone.0164179 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1988019648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471834543</galeid><doaj_id>oai_doaj_org_article_5a8478bed87047139430bbb3146e837b</doaj_id><sourcerecordid>A471834543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c791t-9debc4e9d12ad32cfa5c4f1716608fd98939c9bcd8e6ddbd457bc99eaad5b6223</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqPwDxBEmoRAoiX-SGzfIFURjIqiTR1wazn2SeopjYudIvj3uGs2NWgXky9s2c95z3ltnyR5ibIZIgx9uHY736l2tnUdzDJUUMTEo-QUCYKnBc7I46P1SfIshOssywkviqfJCWYMFRzj02R-ZZuoYrsmvfRuC763EFJXp-UaNuBtl65Aw7Z3PqTlt6_LFXqfnl-uUKo6k5blaomfJ09q1QZ4McyT5MfnT9_LL9PlxfminC-nmgnUT4WBSlMQBmFlCNa1yjWtUayjyHhtBBdEaFFpw6EwpjI0Z5UWApQyeVVgTCbJ64PutnVBDu6DRILzDImC8kgsDoRx6lpuvd0o_1c6ZeXNhvONVNGfbkHmilPGKzCcZZQhIijJqqoiiBbACaui1sch267agNHQ9V61I9HxSWfXsnG_ZZ7lOY5yk-TtIODdrx2EXm5s0NC2qgO3i3XHNITijJKHoDlhrMB7i2f_ofdfxEA1Knq1Xe1iiXovKufRLSc0v0k7u4eKw8DG6virahv3RwHvRgGR6eFP36hdCHJxtXo4e_FzzL45Yteg2n4dXLvrrevCGKQHUHsXgof67j1QJvdNcXsbct8UcmiKGPbq-C3vgm67gPwDGx0Dog</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988019648</pqid></control><display><type>article</type><title>Signaling Properties of Chemerin Receptors CMKLR1, GPR1 and CCRL2</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>De Henau, Olivier ; Degroot, Gaetan-Nagim ; Imbault, Virginie ; Robert, Virginie ; De Poorter, Cédric ; Mcheik, Saria ; Galés, Céline ; Parmentier, Marc ; Springael, Jean-Yves</creator><creatorcontrib>De Henau, Olivier ; Degroot, Gaetan-Nagim ; Imbault, Virginie ; Robert, Virginie ; De Poorter, Cédric ; Mcheik, Saria ; Galés, Céline ; Parmentier, Marc ; Springael, Jean-Yves</creatorcontrib><description>Chemerin is a small chemotactic protein originally identified as the natural ligand of CMKLR1. More recently, two other receptors, GPR1 and CCRL2, have been reported to bind chemerin but their functional relevance remains poorly understood. In this study, we compared the binding and signaling properties of the three human chemerin receptors and showed differences in mode of chemerin binding and receptor signaling. Chemerin binds to all three receptors with low nanomolar affinities. However, the contribution of the chemerin C-terminus to binding efficiency varies greatly amongst receptors. By using BRET-based biosensors monitoring the activation of various G proteins, we showed that binding of chemerin and the chemerin 9 nonapeptide (149YFPGQFAFS157) to CMKLR1 activates the three Gαi subtypes (Gαi1, Gαi2 and Gαi3) and the two Gαo isoforms (Gαoa and Gαob) with potencies correlated to binding affinities. In contrast, no significant activation of G proteins was detected upon binding of chemerin to GPR1 or CCRL2. Binding of chemerin and the chemerin 9 peptide also induced the recruitment of β-arrestin1 and 2 to CMKLR1 and GPR1, though to various degree, but not to CCRL2. However, the propensity of chemerin 9 to activate β-arrestins relative to chemerin is higher when bound to GPR1. Finally, we showed that binding of chemerin to CMKLR1 and GPR1 promotes also the internalization of the two receptors and the phosphorylation of ERK1/2 MAP kinases, although with a different efficiency, and that phosphorylation of ERK1/2 requires both Gαi/o and β-arrestin2 activation but not β-arrestin1. Collectively, these data support a model in which each chemerin receptor displays selective signaling properties.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0164179</identifier><identifier>PMID: 27716822</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Affinity ; Animals ; beta-Arrestin 2 - metabolism ; Binding ; Biology and Life Sciences ; Biosensors ; C-Terminus ; Cell Line ; Chemokines ; Chemokines - metabolism ; Chemotactic Factors - metabolism ; Chemotaxis - physiology ; CHO Cells ; Comparative analysis ; Cricetulus ; Dendritic cells ; Engineering and Technology ; Extracellular signal-regulated kinase ; G proteins ; HEK293 Cells ; Humans ; Intercellular Signaling Peptides and Proteins - metabolism ; Internalization ; Isoforms ; Kinases ; Ligands ; MAP Kinase Signaling System - physiology ; Membrane proteins ; Mice ; Phosphorylation ; Properties (attributes) ; Protein binding ; Proteins ; Receptor mechanisms ; Receptors ; Receptors, CCR - metabolism ; Receptors, Chemokine - metabolism ; Receptors, G-Protein-Coupled - metabolism ; Recruitment ; Research and Analysis Methods ; Signal Transduction - physiology ; Signaling</subject><ispartof>PloS one, 2016-10, Vol.11 (10), p.e0164179-e0164179</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>2016 De Henau et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2016 De Henau et al 2016 De Henau et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c791t-9debc4e9d12ad32cfa5c4f1716608fd98939c9bcd8e6ddbd457bc99eaad5b6223</citedby><cites>FETCH-LOGICAL-c791t-9debc4e9d12ad32cfa5c4f1716608fd98939c9bcd8e6ddbd457bc99eaad5b6223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055294/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055294/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27716822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Henau, Olivier</creatorcontrib><creatorcontrib>Degroot, Gaetan-Nagim</creatorcontrib><creatorcontrib>Imbault, Virginie</creatorcontrib><creatorcontrib>Robert, Virginie</creatorcontrib><creatorcontrib>De Poorter, Cédric</creatorcontrib><creatorcontrib>Mcheik, Saria</creatorcontrib><creatorcontrib>Galés, Céline</creatorcontrib><creatorcontrib>Parmentier, Marc</creatorcontrib><creatorcontrib>Springael, Jean-Yves</creatorcontrib><title>Signaling Properties of Chemerin Receptors CMKLR1, GPR1 and CCRL2</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Chemerin is a small chemotactic protein originally identified as the natural ligand of CMKLR1. More recently, two other receptors, GPR1 and CCRL2, have been reported to bind chemerin but their functional relevance remains poorly understood. In this study, we compared the binding and signaling properties of the three human chemerin receptors and showed differences in mode of chemerin binding and receptor signaling. Chemerin binds to all three receptors with low nanomolar affinities. However, the contribution of the chemerin C-terminus to binding efficiency varies greatly amongst receptors. By using BRET-based biosensors monitoring the activation of various G proteins, we showed that binding of chemerin and the chemerin 9 nonapeptide (149YFPGQFAFS157) to CMKLR1 activates the three Gαi subtypes (Gαi1, Gαi2 and Gαi3) and the two Gαo isoforms (Gαoa and Gαob) with potencies correlated to binding affinities. In contrast, no significant activation of G proteins was detected upon binding of chemerin to GPR1 or CCRL2. Binding of chemerin and the chemerin 9 peptide also induced the recruitment of β-arrestin1 and 2 to CMKLR1 and GPR1, though to various degree, but not to CCRL2. However, the propensity of chemerin 9 to activate β-arrestins relative to chemerin is higher when bound to GPR1. Finally, we showed that binding of chemerin to CMKLR1 and GPR1 promotes also the internalization of the two receptors and the phosphorylation of ERK1/2 MAP kinases, although with a different efficiency, and that phosphorylation of ERK1/2 requires both Gαi/o and β-arrestin2 activation but not β-arrestin1. Collectively, these data support a model in which each chemerin receptor displays selective signaling properties.</description><subject>Activation</subject><subject>Affinity</subject><subject>Animals</subject><subject>beta-Arrestin 2 - metabolism</subject><subject>Binding</subject><subject>Biology and Life Sciences</subject><subject>Biosensors</subject><subject>C-Terminus</subject><subject>Cell Line</subject><subject>Chemokines</subject><subject>Chemokines - metabolism</subject><subject>Chemotactic Factors - metabolism</subject><subject>Chemotaxis - physiology</subject><subject>CHO Cells</subject><subject>Comparative analysis</subject><subject>Cricetulus</subject><subject>Dendritic cells</subject><subject>Engineering and Technology</subject><subject>Extracellular signal-regulated kinase</subject><subject>G proteins</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Internalization</subject><subject>Isoforms</subject><subject>Kinases</subject><subject>Ligands</subject><subject>MAP Kinase Signaling System - physiology</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Phosphorylation</subject><subject>Properties (attributes)</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Receptors, CCR - metabolism</subject><subject>Receptors, Chemokine - metabolism</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Recruitment</subject><subject>Research and Analysis Methods</subject><subject>Signal Transduction - physiology</subject><subject>Signaling</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYqPwDxBEmoRAoiX-SGzfIFURjIqiTR1wazn2SeopjYudIvj3uGs2NWgXky9s2c95z3ltnyR5ibIZIgx9uHY736l2tnUdzDJUUMTEo-QUCYKnBc7I46P1SfIshOssywkviqfJCWYMFRzj02R-ZZuoYrsmvfRuC763EFJXp-UaNuBtl65Aw7Z3PqTlt6_LFXqfnl-uUKo6k5blaomfJ09q1QZ4McyT5MfnT9_LL9PlxfminC-nmgnUT4WBSlMQBmFlCNa1yjWtUayjyHhtBBdEaFFpw6EwpjI0Z5UWApQyeVVgTCbJ64PutnVBDu6DRILzDImC8kgsDoRx6lpuvd0o_1c6ZeXNhvONVNGfbkHmilPGKzCcZZQhIijJqqoiiBbACaui1sch267agNHQ9V61I9HxSWfXsnG_ZZ7lOY5yk-TtIODdrx2EXm5s0NC2qgO3i3XHNITijJKHoDlhrMB7i2f_ofdfxEA1Knq1Xe1iiXovKufRLSc0v0k7u4eKw8DG6virahv3RwHvRgGR6eFP36hdCHJxtXo4e_FzzL45Yteg2n4dXLvrrevCGKQHUHsXgof67j1QJvdNcXsbct8UcmiKGPbq-C3vgm67gPwDGx0Dog</recordid><startdate>20161007</startdate><enddate>20161007</enddate><creator>De Henau, Olivier</creator><creator>Degroot, Gaetan-Nagim</creator><creator>Imbault, Virginie</creator><creator>Robert, Virginie</creator><creator>De Poorter, Cédric</creator><creator>Mcheik, Saria</creator><creator>Galés, Céline</creator><creator>Parmentier, Marc</creator><creator>Springael, Jean-Yves</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20161007</creationdate><title>Signaling Properties of Chemerin Receptors CMKLR1, GPR1 and CCRL2</title><author>De Henau, Olivier ; Degroot, Gaetan-Nagim ; Imbault, Virginie ; Robert, Virginie ; De Poorter, Cédric ; Mcheik, Saria ; Galés, Céline ; Parmentier, Marc ; Springael, Jean-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c791t-9debc4e9d12ad32cfa5c4f1716608fd98939c9bcd8e6ddbd457bc99eaad5b6223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activation</topic><topic>Affinity</topic><topic>Animals</topic><topic>beta-Arrestin 2 - metabolism</topic><topic>Binding</topic><topic>Biology and Life Sciences</topic><topic>Biosensors</topic><topic>C-Terminus</topic><topic>Cell Line</topic><topic>Chemokines</topic><topic>Chemokines - metabolism</topic><topic>Chemotactic Factors - metabolism</topic><topic>Chemotaxis - physiology</topic><topic>CHO Cells</topic><topic>Comparative analysis</topic><topic>Cricetulus</topic><topic>Dendritic cells</topic><topic>Engineering and Technology</topic><topic>Extracellular signal-regulated kinase</topic><topic>G proteins</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Internalization</topic><topic>Isoforms</topic><topic>Kinases</topic><topic>Ligands</topic><topic>MAP Kinase Signaling System - physiology</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Phosphorylation</topic><topic>Properties (attributes)</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Receptors, CCR - metabolism</topic><topic>Receptors, Chemokine - metabolism</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Recruitment</topic><topic>Research and Analysis Methods</topic><topic>Signal Transduction - physiology</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Henau, Olivier</creatorcontrib><creatorcontrib>Degroot, Gaetan-Nagim</creatorcontrib><creatorcontrib>Imbault, Virginie</creatorcontrib><creatorcontrib>Robert, Virginie</creatorcontrib><creatorcontrib>De Poorter, Cédric</creatorcontrib><creatorcontrib>Mcheik, Saria</creatorcontrib><creatorcontrib>Galés, Céline</creatorcontrib><creatorcontrib>Parmentier, Marc</creatorcontrib><creatorcontrib>Springael, Jean-Yves</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Henau, Olivier</au><au>Degroot, Gaetan-Nagim</au><au>Imbault, Virginie</au><au>Robert, Virginie</au><au>De Poorter, Cédric</au><au>Mcheik, Saria</au><au>Galés, Céline</au><au>Parmentier, Marc</au><au>Springael, Jean-Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signaling Properties of Chemerin Receptors CMKLR1, GPR1 and CCRL2</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-10-07</date><risdate>2016</risdate><volume>11</volume><issue>10</issue><spage>e0164179</spage><epage>e0164179</epage><pages>e0164179-e0164179</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Chemerin is a small chemotactic protein originally identified as the natural ligand of CMKLR1. More recently, two other receptors, GPR1 and CCRL2, have been reported to bind chemerin but their functional relevance remains poorly understood. In this study, we compared the binding and signaling properties of the three human chemerin receptors and showed differences in mode of chemerin binding and receptor signaling. Chemerin binds to all three receptors with low nanomolar affinities. However, the contribution of the chemerin C-terminus to binding efficiency varies greatly amongst receptors. By using BRET-based biosensors monitoring the activation of various G proteins, we showed that binding of chemerin and the chemerin 9 nonapeptide (149YFPGQFAFS157) to CMKLR1 activates the three Gαi subtypes (Gαi1, Gαi2 and Gαi3) and the two Gαo isoforms (Gαoa and Gαob) with potencies correlated to binding affinities. In contrast, no significant activation of G proteins was detected upon binding of chemerin to GPR1 or CCRL2. Binding of chemerin and the chemerin 9 peptide also induced the recruitment of β-arrestin1 and 2 to CMKLR1 and GPR1, though to various degree, but not to CCRL2. However, the propensity of chemerin 9 to activate β-arrestins relative to chemerin is higher when bound to GPR1. Finally, we showed that binding of chemerin to CMKLR1 and GPR1 promotes also the internalization of the two receptors and the phosphorylation of ERK1/2 MAP kinases, although with a different efficiency, and that phosphorylation of ERK1/2 requires both Gαi/o and β-arrestin2 activation but not β-arrestin1. Collectively, these data support a model in which each chemerin receptor displays selective signaling properties.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>27716822</pmid><doi>10.1371/journal.pone.0164179</doi><tpages>e0164179</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-10, Vol.11 (10), p.e0164179-e0164179 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1988019648 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Activation Affinity Animals beta-Arrestin 2 - metabolism Binding Biology and Life Sciences Biosensors C-Terminus Cell Line Chemokines Chemokines - metabolism Chemotactic Factors - metabolism Chemotaxis - physiology CHO Cells Comparative analysis Cricetulus Dendritic cells Engineering and Technology Extracellular signal-regulated kinase G proteins HEK293 Cells Humans Intercellular Signaling Peptides and Proteins - metabolism Internalization Isoforms Kinases Ligands MAP Kinase Signaling System - physiology Membrane proteins Mice Phosphorylation Properties (attributes) Protein binding Proteins Receptor mechanisms Receptors Receptors, CCR - metabolism Receptors, Chemokine - metabolism Receptors, G-Protein-Coupled - metabolism Recruitment Research and Analysis Methods Signal Transduction - physiology Signaling |
title | Signaling Properties of Chemerin Receptors CMKLR1, GPR1 and CCRL2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signaling%20Properties%20of%20Chemerin%20Receptors%20CMKLR1,%20GPR1%20and%20CCRL2&rft.jtitle=PloS%20one&rft.au=De%20Henau,%20Olivier&rft.date=2016-10-07&rft.volume=11&rft.issue=10&rft.spage=e0164179&rft.epage=e0164179&rft.pages=e0164179-e0164179&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0164179&rft_dat=%3Cgale_plos_%3EA471834543%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988019648&rft_id=info:pmid/27716822&rft_galeid=A471834543&rft_doaj_id=oai_doaj_org_article_5a8478bed87047139430bbb3146e837b&rfr_iscdi=true |