A new genotype imputation method with tolerance to high missing rate and rare variants
We report a novel algorithm, iBLUP, to impute missing genotypes by simultaneously and comprehensively using identity by descent and linkage disequilibrium information. The simulation studies showed that the algorithm exhibited drastically tolerance to high missing rate, especially for rare variants...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-06, Vol.9 (6), p.e101025-e101025 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e101025 |
---|---|
container_issue | 6 |
container_start_page | e101025 |
container_title | PloS one |
container_volume | 9 |
creator | Yang, Yumei Wang, Qishan Chen, Qiang Liao, Rongrong Zhang, Xiangzhe Yang, Hongjie Zheng, Youmin Zhang, Zhiwu Pan, Yuchun |
description | We report a novel algorithm, iBLUP, to impute missing genotypes by simultaneously and comprehensively using identity by descent and linkage disequilibrium information. The simulation studies showed that the algorithm exhibited drastically tolerance to high missing rate, especially for rare variants than other common imputation methods, e.g. BEAGLE and fastPHASE. At a missing rate of 70%, the accuracy of BEAGLE and fastPHASE dropped to 0.82 and 0.74 respectively while iBLUP retained an accuracy of 0.95. For minor allele, the accuracy of BEAGLE and fastPHASE decreased to -0.1 and 0.03, while iBLUP still had an accuracy of 0.61.We implemented the algorithm in a publicly available software package also named iBLUP. The application of iBLUP for processing real sequencing data in an outbred pig population was demonstrated. |
doi_str_mv | 10.1371/journal.pone.0101025 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1984974340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A417793176</galeid><doaj_id>oai_doaj_org_article_67aba103573b41b0a190688cad2850d4</doaj_id><sourcerecordid>A417793176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c62779faf3d5b63b7c36c2bc742ef19aa1c72025760608fac06cb97f3108085d3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlq0t4Iw-LHwMKCH3sbTtO0zdBJxiTddf-9Gae7TGUvJNAe0ue8yXn7ZtlLjJaYCvxh40ZvYVjunNVLhNMixaPsFFeULDhB9PFRfZI9C2GDUEFLzp9mJ4RVgmCMTrOrVW71Td5p6-LtTudmuxsjRONsvtWxd01-Y2KfRzdoD1bpVOW96fp8a0Iwtss9RJ2DbVLhdX4N3oCN4Xn2pIUh6BfT-yz7-fnTj_Ovi4vLL-vz1cVC8YrE9CRCVC20tClqTmuhKFekVoIR3eIKACtB0lyCI47KFhTiqq5ESzEqUVk09Cx7fdDdDS7IyZIgcVWmCRllKBHrA9E42MidN1vwt9KBkX83nO8k-GjUoCUXUANGtBC0ZrhGgCvEy1JBQ8oCNSxpfZxOG-utbpS20cMwE51_saaXnbuWDAmGiyIJvJsEvPs16hBlslHpYQCr3ZjuXTCCEOOkSuibf9CHp5uoDtIAxrYunav2onLFcPKWYsETtXyASqvRW6NSflqT9mcN72cNiYn6d-xgDEGuv3_7f_byas6-PWJ7DUPsgxvGfd7CHGQHUHkXgtftvckYyX3879yQ-_jLKf6p7dXxD7pvuss7_QMSmf6D</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984974340</pqid></control><display><type>article</type><title>A new genotype imputation method with tolerance to high missing rate and rare variants</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Yumei ; Wang, Qishan ; Chen, Qiang ; Liao, Rongrong ; Zhang, Xiangzhe ; Yang, Hongjie ; Zheng, Youmin ; Zhang, Zhiwu ; Pan, Yuchun</creator><contributor>Cai, Xiaodong</contributor><creatorcontrib>Yang, Yumei ; Wang, Qishan ; Chen, Qiang ; Liao, Rongrong ; Zhang, Xiangzhe ; Yang, Hongjie ; Zheng, Youmin ; Zhang, Zhiwu ; Pan, Yuchun ; Cai, Xiaodong</creatorcontrib><description>We report a novel algorithm, iBLUP, to impute missing genotypes by simultaneously and comprehensively using identity by descent and linkage disequilibrium information. The simulation studies showed that the algorithm exhibited drastically tolerance to high missing rate, especially for rare variants than other common imputation methods, e.g. BEAGLE and fastPHASE. At a missing rate of 70%, the accuracy of BEAGLE and fastPHASE dropped to 0.82 and 0.74 respectively while iBLUP retained an accuracy of 0.95. For minor allele, the accuracy of BEAGLE and fastPHASE decreased to -0.1 and 0.03, while iBLUP still had an accuracy of 0.61.We implemented the algorithm in a publicly available software package also named iBLUP. The application of iBLUP for processing real sequencing data in an outbred pig population was demonstrated.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0101025</identifier><identifier>PMID: 24972110</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Animals ; Bioinformatics ; Biology ; Biology and Life Sciences ; Breeding of animals ; Computer simulation ; Data processing ; Gene loci ; Genetics ; Genomes ; Genomics ; Genotype & phenotype ; Genotypes ; Haplotypes ; Hogs ; Linkage disequilibrium ; Methods ; Polymorphism, Genetic ; Population ; Sensitivity and Specificity ; Software ; Soil sciences ; Studies ; Suidae ; Swine</subject><ispartof>PloS one, 2014-06, Vol.9 (6), p.e101025-e101025</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Yang et al 2014 Yang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c62779faf3d5b63b7c36c2bc742ef19aa1c72025760608fac06cb97f3108085d3</citedby><cites>FETCH-LOGICAL-c692t-c62779faf3d5b63b7c36c2bc742ef19aa1c72025760608fac06cb97f3108085d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074155/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074155/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24972110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cai, Xiaodong</contributor><creatorcontrib>Yang, Yumei</creatorcontrib><creatorcontrib>Wang, Qishan</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Liao, Rongrong</creatorcontrib><creatorcontrib>Zhang, Xiangzhe</creatorcontrib><creatorcontrib>Yang, Hongjie</creatorcontrib><creatorcontrib>Zheng, Youmin</creatorcontrib><creatorcontrib>Zhang, Zhiwu</creatorcontrib><creatorcontrib>Pan, Yuchun</creatorcontrib><title>A new genotype imputation method with tolerance to high missing rate and rare variants</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We report a novel algorithm, iBLUP, to impute missing genotypes by simultaneously and comprehensively using identity by descent and linkage disequilibrium information. The simulation studies showed that the algorithm exhibited drastically tolerance to high missing rate, especially for rare variants than other common imputation methods, e.g. BEAGLE and fastPHASE. At a missing rate of 70%, the accuracy of BEAGLE and fastPHASE dropped to 0.82 and 0.74 respectively while iBLUP retained an accuracy of 0.95. For minor allele, the accuracy of BEAGLE and fastPHASE decreased to -0.1 and 0.03, while iBLUP still had an accuracy of 0.61.We implemented the algorithm in a publicly available software package also named iBLUP. The application of iBLUP for processing real sequencing data in an outbred pig population was demonstrated.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Breeding of animals</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Gene loci</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Genotypes</subject><subject>Haplotypes</subject><subject>Hogs</subject><subject>Linkage disequilibrium</subject><subject>Methods</subject><subject>Polymorphism, Genetic</subject><subject>Population</subject><subject>Sensitivity and Specificity</subject><subject>Software</subject><subject>Soil sciences</subject><subject>Studies</subject><subject>Suidae</subject><subject>Swine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlq0t4Iw-LHwMKCH3sbTtO0zdBJxiTddf-9Gae7TGUvJNAe0ue8yXn7ZtlLjJaYCvxh40ZvYVjunNVLhNMixaPsFFeULDhB9PFRfZI9C2GDUEFLzp9mJ4RVgmCMTrOrVW71Td5p6-LtTudmuxsjRONsvtWxd01-Y2KfRzdoD1bpVOW96fp8a0Iwtss9RJ2DbVLhdX4N3oCN4Xn2pIUh6BfT-yz7-fnTj_Ovi4vLL-vz1cVC8YrE9CRCVC20tClqTmuhKFekVoIR3eIKACtB0lyCI47KFhTiqq5ESzEqUVk09Cx7fdDdDS7IyZIgcVWmCRllKBHrA9E42MidN1vwt9KBkX83nO8k-GjUoCUXUANGtBC0ZrhGgCvEy1JBQ8oCNSxpfZxOG-utbpS20cMwE51_saaXnbuWDAmGiyIJvJsEvPs16hBlslHpYQCr3ZjuXTCCEOOkSuibf9CHp5uoDtIAxrYunav2onLFcPKWYsETtXyASqvRW6NSflqT9mcN72cNiYn6d-xgDEGuv3_7f_byas6-PWJ7DUPsgxvGfd7CHGQHUHkXgtftvckYyX3879yQ-_jLKf6p7dXxD7pvuss7_QMSmf6D</recordid><startdate>20140627</startdate><enddate>20140627</enddate><creator>Yang, Yumei</creator><creator>Wang, Qishan</creator><creator>Chen, Qiang</creator><creator>Liao, Rongrong</creator><creator>Zhang, Xiangzhe</creator><creator>Yang, Hongjie</creator><creator>Zheng, Youmin</creator><creator>Zhang, Zhiwu</creator><creator>Pan, Yuchun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140627</creationdate><title>A new genotype imputation method with tolerance to high missing rate and rare variants</title><author>Yang, Yumei ; Wang, Qishan ; Chen, Qiang ; Liao, Rongrong ; Zhang, Xiangzhe ; Yang, Hongjie ; Zheng, Youmin ; Zhang, Zhiwu ; Pan, Yuchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c62779faf3d5b63b7c36c2bc742ef19aa1c72025760608fac06cb97f3108085d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Breeding of animals</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Gene loci</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Genotypes</topic><topic>Haplotypes</topic><topic>Hogs</topic><topic>Linkage disequilibrium</topic><topic>Methods</topic><topic>Polymorphism, Genetic</topic><topic>Population</topic><topic>Sensitivity and Specificity</topic><topic>Software</topic><topic>Soil sciences</topic><topic>Studies</topic><topic>Suidae</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yumei</creatorcontrib><creatorcontrib>Wang, Qishan</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Liao, Rongrong</creatorcontrib><creatorcontrib>Zhang, Xiangzhe</creatorcontrib><creatorcontrib>Yang, Hongjie</creatorcontrib><creatorcontrib>Zheng, Youmin</creatorcontrib><creatorcontrib>Zhang, Zhiwu</creatorcontrib><creatorcontrib>Pan, Yuchun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yumei</au><au>Wang, Qishan</au><au>Chen, Qiang</au><au>Liao, Rongrong</au><au>Zhang, Xiangzhe</au><au>Yang, Hongjie</au><au>Zheng, Youmin</au><au>Zhang, Zhiwu</au><au>Pan, Yuchun</au><au>Cai, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new genotype imputation method with tolerance to high missing rate and rare variants</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-06-27</date><risdate>2014</risdate><volume>9</volume><issue>6</issue><spage>e101025</spage><epage>e101025</epage><pages>e101025-e101025</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We report a novel algorithm, iBLUP, to impute missing genotypes by simultaneously and comprehensively using identity by descent and linkage disequilibrium information. The simulation studies showed that the algorithm exhibited drastically tolerance to high missing rate, especially for rare variants than other common imputation methods, e.g. BEAGLE and fastPHASE. At a missing rate of 70%, the accuracy of BEAGLE and fastPHASE dropped to 0.82 and 0.74 respectively while iBLUP retained an accuracy of 0.95. For minor allele, the accuracy of BEAGLE and fastPHASE decreased to -0.1 and 0.03, while iBLUP still had an accuracy of 0.61.We implemented the algorithm in a publicly available software package also named iBLUP. The application of iBLUP for processing real sequencing data in an outbred pig population was demonstrated.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24972110</pmid><doi>10.1371/journal.pone.0101025</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-06, Vol.9 (6), p.e101025-e101025 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1984974340 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Analysis Animals Bioinformatics Biology Biology and Life Sciences Breeding of animals Computer simulation Data processing Gene loci Genetics Genomes Genomics Genotype & phenotype Genotypes Haplotypes Hogs Linkage disequilibrium Methods Polymorphism, Genetic Population Sensitivity and Specificity Software Soil sciences Studies Suidae Swine |
title | A new genotype imputation method with tolerance to high missing rate and rare variants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20genotype%20imputation%20method%20with%20tolerance%20to%20high%20missing%20rate%20and%20rare%20variants&rft.jtitle=PloS%20one&rft.au=Yang,%20Yumei&rft.date=2014-06-27&rft.volume=9&rft.issue=6&rft.spage=e101025&rft.epage=e101025&rft.pages=e101025-e101025&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0101025&rft_dat=%3Cgale_plos_%3EA417793176%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984974340&rft_id=info:pmid/24972110&rft_galeid=A417793176&rft_doaj_id=oai_doaj_org_article_67aba103573b41b0a190688cad2850d4&rfr_iscdi=true |