A new genotype imputation method with tolerance to high missing rate and rare variants

We report a novel algorithm, iBLUP, to impute missing genotypes by simultaneously and comprehensively using identity by descent and linkage disequilibrium information. The simulation studies showed that the algorithm exhibited drastically tolerance to high missing rate, especially for rare variants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-06, Vol.9 (6), p.e101025-e101025
Hauptverfasser: Yang, Yumei, Wang, Qishan, Chen, Qiang, Liao, Rongrong, Zhang, Xiangzhe, Yang, Hongjie, Zheng, Youmin, Zhang, Zhiwu, Pan, Yuchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e101025
container_issue 6
container_start_page e101025
container_title PloS one
container_volume 9
creator Yang, Yumei
Wang, Qishan
Chen, Qiang
Liao, Rongrong
Zhang, Xiangzhe
Yang, Hongjie
Zheng, Youmin
Zhang, Zhiwu
Pan, Yuchun
description We report a novel algorithm, iBLUP, to impute missing genotypes by simultaneously and comprehensively using identity by descent and linkage disequilibrium information. The simulation studies showed that the algorithm exhibited drastically tolerance to high missing rate, especially for rare variants than other common imputation methods, e.g. BEAGLE and fastPHASE. At a missing rate of 70%, the accuracy of BEAGLE and fastPHASE dropped to 0.82 and 0.74 respectively while iBLUP retained an accuracy of 0.95. For minor allele, the accuracy of BEAGLE and fastPHASE decreased to -0.1 and 0.03, while iBLUP still had an accuracy of 0.61.We implemented the algorithm in a publicly available software package also named iBLUP. The application of iBLUP for processing real sequencing data in an outbred pig population was demonstrated.
doi_str_mv 10.1371/journal.pone.0101025
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1984974340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A417793176</galeid><doaj_id>oai_doaj_org_article_67aba103573b41b0a190688cad2850d4</doaj_id><sourcerecordid>A417793176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c62779faf3d5b63b7c36c2bc742ef19aa1c72025760608fac06cb97f3108085d3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlq0t4Iw-LHwMKCH3sbTtO0zdBJxiTddf-9Gae7TGUvJNAe0ue8yXn7ZtlLjJaYCvxh40ZvYVjunNVLhNMixaPsFFeULDhB9PFRfZI9C2GDUEFLzp9mJ4RVgmCMTrOrVW71Td5p6-LtTudmuxsjRONsvtWxd01-Y2KfRzdoD1bpVOW96fp8a0Iwtss9RJ2DbVLhdX4N3oCN4Xn2pIUh6BfT-yz7-fnTj_Ovi4vLL-vz1cVC8YrE9CRCVC20tClqTmuhKFekVoIR3eIKACtB0lyCI47KFhTiqq5ESzEqUVk09Cx7fdDdDS7IyZIgcVWmCRllKBHrA9E42MidN1vwt9KBkX83nO8k-GjUoCUXUANGtBC0ZrhGgCvEy1JBQ8oCNSxpfZxOG-utbpS20cMwE51_saaXnbuWDAmGiyIJvJsEvPs16hBlslHpYQCr3ZjuXTCCEOOkSuibf9CHp5uoDtIAxrYunav2onLFcPKWYsETtXyASqvRW6NSflqT9mcN72cNiYn6d-xgDEGuv3_7f_byas6-PWJ7DUPsgxvGfd7CHGQHUHkXgtftvckYyX3879yQ-_jLKf6p7dXxD7pvuss7_QMSmf6D</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984974340</pqid></control><display><type>article</type><title>A new genotype imputation method with tolerance to high missing rate and rare variants</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Yumei ; Wang, Qishan ; Chen, Qiang ; Liao, Rongrong ; Zhang, Xiangzhe ; Yang, Hongjie ; Zheng, Youmin ; Zhang, Zhiwu ; Pan, Yuchun</creator><contributor>Cai, Xiaodong</contributor><creatorcontrib>Yang, Yumei ; Wang, Qishan ; Chen, Qiang ; Liao, Rongrong ; Zhang, Xiangzhe ; Yang, Hongjie ; Zheng, Youmin ; Zhang, Zhiwu ; Pan, Yuchun ; Cai, Xiaodong</creatorcontrib><description>We report a novel algorithm, iBLUP, to impute missing genotypes by simultaneously and comprehensively using identity by descent and linkage disequilibrium information. The simulation studies showed that the algorithm exhibited drastically tolerance to high missing rate, especially for rare variants than other common imputation methods, e.g. BEAGLE and fastPHASE. At a missing rate of 70%, the accuracy of BEAGLE and fastPHASE dropped to 0.82 and 0.74 respectively while iBLUP retained an accuracy of 0.95. For minor allele, the accuracy of BEAGLE and fastPHASE decreased to -0.1 and 0.03, while iBLUP still had an accuracy of 0.61.We implemented the algorithm in a publicly available software package also named iBLUP. The application of iBLUP for processing real sequencing data in an outbred pig population was demonstrated.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0101025</identifier><identifier>PMID: 24972110</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Animals ; Bioinformatics ; Biology ; Biology and Life Sciences ; Breeding of animals ; Computer simulation ; Data processing ; Gene loci ; Genetics ; Genomes ; Genomics ; Genotype &amp; phenotype ; Genotypes ; Haplotypes ; Hogs ; Linkage disequilibrium ; Methods ; Polymorphism, Genetic ; Population ; Sensitivity and Specificity ; Software ; Soil sciences ; Studies ; Suidae ; Swine</subject><ispartof>PloS one, 2014-06, Vol.9 (6), p.e101025-e101025</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Yang et al 2014 Yang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c62779faf3d5b63b7c36c2bc742ef19aa1c72025760608fac06cb97f3108085d3</citedby><cites>FETCH-LOGICAL-c692t-c62779faf3d5b63b7c36c2bc742ef19aa1c72025760608fac06cb97f3108085d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074155/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074155/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24972110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cai, Xiaodong</contributor><creatorcontrib>Yang, Yumei</creatorcontrib><creatorcontrib>Wang, Qishan</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Liao, Rongrong</creatorcontrib><creatorcontrib>Zhang, Xiangzhe</creatorcontrib><creatorcontrib>Yang, Hongjie</creatorcontrib><creatorcontrib>Zheng, Youmin</creatorcontrib><creatorcontrib>Zhang, Zhiwu</creatorcontrib><creatorcontrib>Pan, Yuchun</creatorcontrib><title>A new genotype imputation method with tolerance to high missing rate and rare variants</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We report a novel algorithm, iBLUP, to impute missing genotypes by simultaneously and comprehensively using identity by descent and linkage disequilibrium information. The simulation studies showed that the algorithm exhibited drastically tolerance to high missing rate, especially for rare variants than other common imputation methods, e.g. BEAGLE and fastPHASE. At a missing rate of 70%, the accuracy of BEAGLE and fastPHASE dropped to 0.82 and 0.74 respectively while iBLUP retained an accuracy of 0.95. For minor allele, the accuracy of BEAGLE and fastPHASE decreased to -0.1 and 0.03, while iBLUP still had an accuracy of 0.61.We implemented the algorithm in a publicly available software package also named iBLUP. The application of iBLUP for processing real sequencing data in an outbred pig population was demonstrated.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Breeding of animals</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Gene loci</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Haplotypes</subject><subject>Hogs</subject><subject>Linkage disequilibrium</subject><subject>Methods</subject><subject>Polymorphism, Genetic</subject><subject>Population</subject><subject>Sensitivity and Specificity</subject><subject>Software</subject><subject>Soil sciences</subject><subject>Studies</subject><subject>Suidae</subject><subject>Swine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjPlq0t4Iw-LHwMKCH3sbTtO0zdBJxiTddf-9Gae7TGUvJNAe0ue8yXn7ZtlLjJaYCvxh40ZvYVjunNVLhNMixaPsFFeULDhB9PFRfZI9C2GDUEFLzp9mJ4RVgmCMTrOrVW71Td5p6-LtTudmuxsjRONsvtWxd01-Y2KfRzdoD1bpVOW96fp8a0Iwtss9RJ2DbVLhdX4N3oCN4Xn2pIUh6BfT-yz7-fnTj_Ovi4vLL-vz1cVC8YrE9CRCVC20tClqTmuhKFekVoIR3eIKACtB0lyCI47KFhTiqq5ESzEqUVk09Cx7fdDdDS7IyZIgcVWmCRllKBHrA9E42MidN1vwt9KBkX83nO8k-GjUoCUXUANGtBC0ZrhGgCvEy1JBQ8oCNSxpfZxOG-utbpS20cMwE51_saaXnbuWDAmGiyIJvJsEvPs16hBlslHpYQCr3ZjuXTCCEOOkSuibf9CHp5uoDtIAxrYunav2onLFcPKWYsETtXyASqvRW6NSflqT9mcN72cNiYn6d-xgDEGuv3_7f_byas6-PWJ7DUPsgxvGfd7CHGQHUHkXgtftvckYyX3879yQ-_jLKf6p7dXxD7pvuss7_QMSmf6D</recordid><startdate>20140627</startdate><enddate>20140627</enddate><creator>Yang, Yumei</creator><creator>Wang, Qishan</creator><creator>Chen, Qiang</creator><creator>Liao, Rongrong</creator><creator>Zhang, Xiangzhe</creator><creator>Yang, Hongjie</creator><creator>Zheng, Youmin</creator><creator>Zhang, Zhiwu</creator><creator>Pan, Yuchun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140627</creationdate><title>A new genotype imputation method with tolerance to high missing rate and rare variants</title><author>Yang, Yumei ; Wang, Qishan ; Chen, Qiang ; Liao, Rongrong ; Zhang, Xiangzhe ; Yang, Hongjie ; Zheng, Youmin ; Zhang, Zhiwu ; Pan, Yuchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c62779faf3d5b63b7c36c2bc742ef19aa1c72025760608fac06cb97f3108085d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Breeding of animals</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Gene loci</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Haplotypes</topic><topic>Hogs</topic><topic>Linkage disequilibrium</topic><topic>Methods</topic><topic>Polymorphism, Genetic</topic><topic>Population</topic><topic>Sensitivity and Specificity</topic><topic>Software</topic><topic>Soil sciences</topic><topic>Studies</topic><topic>Suidae</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yumei</creatorcontrib><creatorcontrib>Wang, Qishan</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Liao, Rongrong</creatorcontrib><creatorcontrib>Zhang, Xiangzhe</creatorcontrib><creatorcontrib>Yang, Hongjie</creatorcontrib><creatorcontrib>Zheng, Youmin</creatorcontrib><creatorcontrib>Zhang, Zhiwu</creatorcontrib><creatorcontrib>Pan, Yuchun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yumei</au><au>Wang, Qishan</au><au>Chen, Qiang</au><au>Liao, Rongrong</au><au>Zhang, Xiangzhe</au><au>Yang, Hongjie</au><au>Zheng, Youmin</au><au>Zhang, Zhiwu</au><au>Pan, Yuchun</au><au>Cai, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new genotype imputation method with tolerance to high missing rate and rare variants</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-06-27</date><risdate>2014</risdate><volume>9</volume><issue>6</issue><spage>e101025</spage><epage>e101025</epage><pages>e101025-e101025</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We report a novel algorithm, iBLUP, to impute missing genotypes by simultaneously and comprehensively using identity by descent and linkage disequilibrium information. The simulation studies showed that the algorithm exhibited drastically tolerance to high missing rate, especially for rare variants than other common imputation methods, e.g. BEAGLE and fastPHASE. At a missing rate of 70%, the accuracy of BEAGLE and fastPHASE dropped to 0.82 and 0.74 respectively while iBLUP retained an accuracy of 0.95. For minor allele, the accuracy of BEAGLE and fastPHASE decreased to -0.1 and 0.03, while iBLUP still had an accuracy of 0.61.We implemented the algorithm in a publicly available software package also named iBLUP. The application of iBLUP for processing real sequencing data in an outbred pig population was demonstrated.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24972110</pmid><doi>10.1371/journal.pone.0101025</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-06, Vol.9 (6), p.e101025-e101025
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1984974340
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Animals
Bioinformatics
Biology
Biology and Life Sciences
Breeding of animals
Computer simulation
Data processing
Gene loci
Genetics
Genomes
Genomics
Genotype & phenotype
Genotypes
Haplotypes
Hogs
Linkage disequilibrium
Methods
Polymorphism, Genetic
Population
Sensitivity and Specificity
Software
Soil sciences
Studies
Suidae
Swine
title A new genotype imputation method with tolerance to high missing rate and rare variants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20genotype%20imputation%20method%20with%20tolerance%20to%20high%20missing%20rate%20and%20rare%20variants&rft.jtitle=PloS%20one&rft.au=Yang,%20Yumei&rft.date=2014-06-27&rft.volume=9&rft.issue=6&rft.spage=e101025&rft.epage=e101025&rft.pages=e101025-e101025&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0101025&rft_dat=%3Cgale_plos_%3EA417793176%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984974340&rft_id=info:pmid/24972110&rft_galeid=A417793176&rft_doaj_id=oai_doaj_org_article_67aba103573b41b0a190688cad2850d4&rfr_iscdi=true