High throughput SNP discovery and genotyping in hexaploid wheat
Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-01, Vol.13 (1), p.e0186329-e0186329 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0186329 |
---|---|
container_issue | 1 |
container_start_page | e0186329 |
container_title | PloS one |
container_volume | 13 |
creator | Rimbert, Hélène Darrier, Benoît Navarro, Julien Kitt, Jonathan Choulet, Frédéric Leveugle, Magalie Duarte, Jorge Rivière, Nathalie Eversole, Kellye Le Gouis, Jacques Davassi, Alessandro Balfourier, François Le Paslier, Marie-Christine Berard, Aurélie Brunel, Dominique Feuillet, Catherine Poncet, Charles Sourdille, Pierre Paux, Etienne |
description | Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research. |
doi_str_mv | 10.1371/journal.pone.0186329 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1983902681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A521120077</galeid><doaj_id>oai_doaj_org_article_ad7dcfe39d554d579ba9ca2d94ea012b</doaj_id><sourcerecordid>A521120077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-8c0dd49d1147e2063a4148f8a57858b85986836228c56c37864c478a94489eb83</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkLsosWfsX0DqiaglSqGGHBrubaTuErjLnbK-u9x125qpl2gXCQ6ft73fMQny15DMIaYwY9L33etasZr39oxgLzASDzJTqHAaFQggJ8efZ9kL0JYAkAxL4rn2QkSSGAi6Gn2eeqqOo915_uqXvcxv_r-IzcuaL-x3TZXrckr2_q4Xbu2yl2b1_ZGrRvvTP63tiq-zJ6Vqgn21eF9lv3--uXXxXQ0v_w2u5jMR5qhIo64BsYQYSAkzCJQYEUg4SVXlHHKF5wKXnBcIMQ1LTRmvCCaMK4EIVzYBcdn2du9b8od5KH3IKHgWABUcJiI2Z4wXi3lunMr1W2lV07eBnxXSdVFpxsrlWFGlxYLQykxlImFElohI4hVAKJF8vp0yNYvVtZo28ZONQPT4Unraln5jaSMCAZIMjjfG9QPZNPJXO5iqWbEKcGbXeEfDsk6f93bEOUqzd82jWqt7297JImmFCX03QP08UkcqEqlZl1b-lSj3pnKCUUQIgAYS9T4ESo9xq6cTpeqdCk-EJwPBImJ9iZWqg9Bzq5-_j97-WfIvj9i06VqYh1800fn2zAEyR7UnQ-hs-X9ZCGQu524m4bc7YQ87ESSvTn-mfeiuyXA_wByjQN7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983902681</pqid></control><display><type>article</type><title>High throughput SNP discovery and genotyping in hexaploid wheat</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rimbert, Hélène ; Darrier, Benoît ; Navarro, Julien ; Kitt, Jonathan ; Choulet, Frédéric ; Leveugle, Magalie ; Duarte, Jorge ; Rivière, Nathalie ; Eversole, Kellye ; Le Gouis, Jacques ; Davassi, Alessandro ; Balfourier, François ; Le Paslier, Marie-Christine ; Berard, Aurélie ; Brunel, Dominique ; Feuillet, Catherine ; Poncet, Charles ; Sourdille, Pierre ; Paux, Etienne</creator><contributor>Zhang, Aimin</contributor><creatorcontrib>Rimbert, Hélène ; Darrier, Benoît ; Navarro, Julien ; Kitt, Jonathan ; Choulet, Frédéric ; Leveugle, Magalie ; Duarte, Jorge ; Rivière, Nathalie ; Eversole, Kellye ; Le Gouis, Jacques ; Davassi, Alessandro ; Balfourier, François ; Le Paslier, Marie-Christine ; Berard, Aurélie ; Brunel, Dominique ; Feuillet, Catherine ; Poncet, Charles ; Sourdille, Pierre ; Paux, Etienne ; on behalf The BreedWheat Consortium ; International Wheat Genome Sequencing Consortium ; on behalf of The International Wheat Genome Sequencing Consortium ; Zhang, Aimin</creatorcontrib><description>Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0186329</identifier><identifier>PMID: 29293495</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Biotechnology ; Breeding ; Chromosomes ; Clustering ; Consortia ; Genes ; Genetic aspects ; Genetic resources ; Genetics ; Genome-wide association studies ; Genomes ; Genomics ; Genotypes ; Genotyping ; High-throughput screening (Biochemical assaying) ; Life Sciences ; Physiological aspects ; Plant breeding ; Research and Analysis Methods ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Triticum ; Triticum aestivum ; Vegetal Biology ; Wheat</subject><ispartof>PloS one, 2018-01, Vol.13 (1), p.e0186329-e0186329</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Rimbert et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2018 Rimbert et al 2018 Rimbert et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-8c0dd49d1147e2063a4148f8a57858b85986836228c56c37864c478a94489eb83</citedby><cites>FETCH-LOGICAL-c726t-8c0dd49d1147e2063a4148f8a57858b85986836228c56c37864c478a94489eb83</cites><orcidid>0000-0002-3094-7129 ; 0000-0002-9163-6631 ; 0000-0002-2288-6864 ; 0000-0001-5726-4902 ; 0000-0003-2991-4001 ; 0000-0002-1027-2224 ; 0000-0003-1788-7288 ; 0000-0003-3376-347X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749704/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5749704/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29293495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02628543$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Zhang, Aimin</contributor><creatorcontrib>Rimbert, Hélène</creatorcontrib><creatorcontrib>Darrier, Benoît</creatorcontrib><creatorcontrib>Navarro, Julien</creatorcontrib><creatorcontrib>Kitt, Jonathan</creatorcontrib><creatorcontrib>Choulet, Frédéric</creatorcontrib><creatorcontrib>Leveugle, Magalie</creatorcontrib><creatorcontrib>Duarte, Jorge</creatorcontrib><creatorcontrib>Rivière, Nathalie</creatorcontrib><creatorcontrib>Eversole, Kellye</creatorcontrib><creatorcontrib>Le Gouis, Jacques</creatorcontrib><creatorcontrib>Davassi, Alessandro</creatorcontrib><creatorcontrib>Balfourier, François</creatorcontrib><creatorcontrib>Le Paslier, Marie-Christine</creatorcontrib><creatorcontrib>Berard, Aurélie</creatorcontrib><creatorcontrib>Brunel, Dominique</creatorcontrib><creatorcontrib>Feuillet, Catherine</creatorcontrib><creatorcontrib>Poncet, Charles</creatorcontrib><creatorcontrib>Sourdille, Pierre</creatorcontrib><creatorcontrib>Paux, Etienne</creatorcontrib><creatorcontrib>on behalf The BreedWheat Consortium</creatorcontrib><creatorcontrib>International Wheat Genome Sequencing Consortium</creatorcontrib><creatorcontrib>on behalf of The International Wheat Genome Sequencing Consortium</creatorcontrib><title>High throughput SNP discovery and genotyping in hexaploid wheat</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research.</description><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Breeding</subject><subject>Chromosomes</subject><subject>Clustering</subject><subject>Consortia</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic resources</subject><subject>Genetics</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Genotyping</subject><subject>High-throughput screening (Biochemical assaying)</subject><subject>Life Sciences</subject><subject>Physiological aspects</subject><subject>Plant breeding</subject><subject>Research and Analysis Methods</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Triticum</subject><subject>Triticum aestivum</subject><subject>Vegetal Biology</subject><subject>Wheat</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkLsosWfsX0DqiaglSqGGHBrubaTuErjLnbK-u9x125qpl2gXCQ6ft73fMQny15DMIaYwY9L33etasZr39oxgLzASDzJTqHAaFQggJ8efZ9kL0JYAkAxL4rn2QkSSGAi6Gn2eeqqOo915_uqXvcxv_r-IzcuaL-x3TZXrckr2_q4Xbu2yl2b1_ZGrRvvTP63tiq-zJ6Vqgn21eF9lv3--uXXxXQ0v_w2u5jMR5qhIo64BsYQYSAkzCJQYEUg4SVXlHHKF5wKXnBcIMQ1LTRmvCCaMK4EIVzYBcdn2du9b8od5KH3IKHgWABUcJiI2Z4wXi3lunMr1W2lV07eBnxXSdVFpxsrlWFGlxYLQykxlImFElohI4hVAKJF8vp0yNYvVtZo28ZONQPT4Unraln5jaSMCAZIMjjfG9QPZNPJXO5iqWbEKcGbXeEfDsk6f93bEOUqzd82jWqt7297JImmFCX03QP08UkcqEqlZl1b-lSj3pnKCUUQIgAYS9T4ESo9xq6cTpeqdCk-EJwPBImJ9iZWqg9Bzq5-_j97-WfIvj9i06VqYh1800fn2zAEyR7UnQ-hs-X9ZCGQu524m4bc7YQ87ESSvTn-mfeiuyXA_wByjQN7</recordid><startdate>20180102</startdate><enddate>20180102</enddate><creator>Rimbert, Hélène</creator><creator>Darrier, Benoît</creator><creator>Navarro, Julien</creator><creator>Kitt, Jonathan</creator><creator>Choulet, Frédéric</creator><creator>Leveugle, Magalie</creator><creator>Duarte, Jorge</creator><creator>Rivière, Nathalie</creator><creator>Eversole, Kellye</creator><creator>Le Gouis, Jacques</creator><creator>Davassi, Alessandro</creator><creator>Balfourier, François</creator><creator>Le Paslier, Marie-Christine</creator><creator>Berard, Aurélie</creator><creator>Brunel, Dominique</creator><creator>Feuillet, Catherine</creator><creator>Poncet, Charles</creator><creator>Sourdille, Pierre</creator><creator>Paux, Etienne</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3094-7129</orcidid><orcidid>https://orcid.org/0000-0002-9163-6631</orcidid><orcidid>https://orcid.org/0000-0002-2288-6864</orcidid><orcidid>https://orcid.org/0000-0001-5726-4902</orcidid><orcidid>https://orcid.org/0000-0003-2991-4001</orcidid><orcidid>https://orcid.org/0000-0002-1027-2224</orcidid><orcidid>https://orcid.org/0000-0003-1788-7288</orcidid><orcidid>https://orcid.org/0000-0003-3376-347X</orcidid></search><sort><creationdate>20180102</creationdate><title>High throughput SNP discovery and genotyping in hexaploid wheat</title><author>Rimbert, Hélène ; Darrier, Benoît ; Navarro, Julien ; Kitt, Jonathan ; Choulet, Frédéric ; Leveugle, Magalie ; Duarte, Jorge ; Rivière, Nathalie ; Eversole, Kellye ; Le Gouis, Jacques ; Davassi, Alessandro ; Balfourier, François ; Le Paslier, Marie-Christine ; Berard, Aurélie ; Brunel, Dominique ; Feuillet, Catherine ; Poncet, Charles ; Sourdille, Pierre ; Paux, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-8c0dd49d1147e2063a4148f8a57858b85986836228c56c37864c478a94489eb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Breeding</topic><topic>Chromosomes</topic><topic>Clustering</topic><topic>Consortia</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic resources</topic><topic>Genetics</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Genotyping</topic><topic>High-throughput screening (Biochemical assaying)</topic><topic>Life Sciences</topic><topic>Physiological aspects</topic><topic>Plant breeding</topic><topic>Research and Analysis Methods</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Triticum</topic><topic>Triticum aestivum</topic><topic>Vegetal Biology</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rimbert, Hélène</creatorcontrib><creatorcontrib>Darrier, Benoît</creatorcontrib><creatorcontrib>Navarro, Julien</creatorcontrib><creatorcontrib>Kitt, Jonathan</creatorcontrib><creatorcontrib>Choulet, Frédéric</creatorcontrib><creatorcontrib>Leveugle, Magalie</creatorcontrib><creatorcontrib>Duarte, Jorge</creatorcontrib><creatorcontrib>Rivière, Nathalie</creatorcontrib><creatorcontrib>Eversole, Kellye</creatorcontrib><creatorcontrib>Le Gouis, Jacques</creatorcontrib><creatorcontrib>Davassi, Alessandro</creatorcontrib><creatorcontrib>Balfourier, François</creatorcontrib><creatorcontrib>Le Paslier, Marie-Christine</creatorcontrib><creatorcontrib>Berard, Aurélie</creatorcontrib><creatorcontrib>Brunel, Dominique</creatorcontrib><creatorcontrib>Feuillet, Catherine</creatorcontrib><creatorcontrib>Poncet, Charles</creatorcontrib><creatorcontrib>Sourdille, Pierre</creatorcontrib><creatorcontrib>Paux, Etienne</creatorcontrib><creatorcontrib>on behalf The BreedWheat Consortium</creatorcontrib><creatorcontrib>International Wheat Genome Sequencing Consortium</creatorcontrib><creatorcontrib>on behalf of The International Wheat Genome Sequencing Consortium</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rimbert, Hélène</au><au>Darrier, Benoît</au><au>Navarro, Julien</au><au>Kitt, Jonathan</au><au>Choulet, Frédéric</au><au>Leveugle, Magalie</au><au>Duarte, Jorge</au><au>Rivière, Nathalie</au><au>Eversole, Kellye</au><au>Le Gouis, Jacques</au><au>Davassi, Alessandro</au><au>Balfourier, François</au><au>Le Paslier, Marie-Christine</au><au>Berard, Aurélie</au><au>Brunel, Dominique</au><au>Feuillet, Catherine</au><au>Poncet, Charles</au><au>Sourdille, Pierre</au><au>Paux, Etienne</au><au>Zhang, Aimin</au><aucorp>on behalf The BreedWheat Consortium</aucorp><aucorp>International Wheat Genome Sequencing Consortium</aucorp><aucorp>on behalf of The International Wheat Genome Sequencing Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High throughput SNP discovery and genotyping in hexaploid wheat</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-01-02</date><risdate>2018</risdate><volume>13</volume><issue>1</issue><spage>e0186329</spage><epage>e0186329</epage><pages>e0186329-e0186329</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29293495</pmid><doi>10.1371/journal.pone.0186329</doi><tpages>e0186329</tpages><orcidid>https://orcid.org/0000-0002-3094-7129</orcidid><orcidid>https://orcid.org/0000-0002-9163-6631</orcidid><orcidid>https://orcid.org/0000-0002-2288-6864</orcidid><orcidid>https://orcid.org/0000-0001-5726-4902</orcidid><orcidid>https://orcid.org/0000-0003-2991-4001</orcidid><orcidid>https://orcid.org/0000-0002-1027-2224</orcidid><orcidid>https://orcid.org/0000-0003-1788-7288</orcidid><orcidid>https://orcid.org/0000-0003-3376-347X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-01, Vol.13 (1), p.e0186329-e0186329 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1983902681 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biology and Life Sciences Biotechnology Breeding Chromosomes Clustering Consortia Genes Genetic aspects Genetic resources Genetics Genome-wide association studies Genomes Genomics Genotypes Genotyping High-throughput screening (Biochemical assaying) Life Sciences Physiological aspects Plant breeding Research and Analysis Methods Single nucleotide polymorphisms Single-nucleotide polymorphism Triticum Triticum aestivum Vegetal Biology Wheat |
title | High throughput SNP discovery and genotyping in hexaploid wheat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20throughput%20SNP%20discovery%20and%20genotyping%20in%20hexaploid%20wheat&rft.jtitle=PloS%20one&rft.au=Rimbert,%20H%C3%A9l%C3%A8ne&rft.aucorp=on%20behalf%20The%20BreedWheat%20Consortium&rft.date=2018-01-02&rft.volume=13&rft.issue=1&rft.spage=e0186329&rft.epage=e0186329&rft.pages=e0186329-e0186329&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0186329&rft_dat=%3Cgale_plos_%3EA521120077%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983902681&rft_id=info:pmid/29293495&rft_galeid=A521120077&rft_doaj_id=oai_doaj_org_article_ad7dcfe39d554d579ba9ca2d94ea012b&rfr_iscdi=true |