Doxorubicin impairs the insulin-like growth factor-1 system and causes insulin-like growth factor-1 resistance in cardiomyocytes

Insulin-like growth factor-1 (IGF-1) promotes the survival of cardiomyocytes by activating type 1 IGF receptor (IGF-1R). Within the myocardium, IGF-1 action is modulated by IGF binding protein-3 (IGFBP-3), which sequesters IGF-1 away from IGF-1R. Since cardiomyocyte apoptosis is implicated in anthra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-05, Vol.10 (5), p.e0124643
Hauptverfasser: Fabbi, Patrizia, Spallarossa, Paolo, Garibaldi, Silvano, Barisione, Chiara, Mura, Marzia, Altieri, Paola, Rebesco, Barbara, Monti, Maria Gaia, Canepa, Marco, Ghigliotti, Giorgio, Brunelli, Claudio, Ameri, Pietro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e0124643
container_title PloS one
container_volume 10
creator Fabbi, Patrizia
Spallarossa, Paolo
Garibaldi, Silvano
Barisione, Chiara
Mura, Marzia
Altieri, Paola
Rebesco, Barbara
Monti, Maria Gaia
Canepa, Marco
Ghigliotti, Giorgio
Brunelli, Claudio
Ameri, Pietro
description Insulin-like growth factor-1 (IGF-1) promotes the survival of cardiomyocytes by activating type 1 IGF receptor (IGF-1R). Within the myocardium, IGF-1 action is modulated by IGF binding protein-3 (IGFBP-3), which sequesters IGF-1 away from IGF-1R. Since cardiomyocyte apoptosis is implicated in anthracycline cardiotoxicity, we investigated the effects of the anthracycline, doxorubicin, on the IGF-1 system in H9c2 cardiomyocytes. Besides inducing apoptosis, concentrations of doxorubicin comparable to those observed in patients after bolus infusion (0.1-1 µM) caused a progressive decrease in IGF-1R and increase in IGFBP-3 expression. Exogenous IGF-1 was capable to rescue cardiomyocytes from apoptosis triggered by 0.1 and 0.5 µM, but not 1 µM doxorubicin. The loss of response to IGF-1 was paralleled by a significant reduction in IGF-1 availability and signaling, as assessed by free hormone levels in conditioned media and Akt phosphorylation in cell lysates, respectively. Doxorubicin also dose-dependently induced p53, which is known to repress the transcription of IGF1R and induce that of IGFBP3. Pre-treatment with the p53 inhibitor, pifithrin-α, prevented apoptosis and the changes in IGF-1R and IGFBP-3 elicited by doxorubicin. The decrease in IGF-1R and increase in IGFBP-3, as well as apoptosis, were also antagonized by pre-treatment with the antioxidant agents, N-acetylcysteine, dexrazoxane, and carvedilol. Doxorubicin down-regulates IGF-1R and up-regulates IGFBP-3 via p53 and oxidative stress in H9c2 cells. This leads to resistance to IGF-1 that may contribute to doxorubicin-initiated apoptosis. Further studies are needed to confirm these findings in human cardiomyocytes and explore the possibility of manipulating the IGF-1 axis to protect against anthracycline cardiotoxicity.
doi_str_mv 10.1371/journal.pone.0124643
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1982585746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A413203785</galeid><doaj_id>oai_doaj_org_article_7873e7f011504a0fbd4313266562c921</doaj_id><sourcerecordid>A413203785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-dab1652724a5f04cb45453177f80fed2bf49427acdcb20823f557c6a84d6bc233</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguBFx3ynvRGW9WtgYcGv25CmyUzGNhmTVHfu_OlmnO4yBRXJRcLJ8745nLxF8RiCBcQcvtz4MTjZL7be6QWAiDCC7xSnsMGoYgjgu0fnk-JBjBsAKK4Zu1-cINpQypr6tPj52l_7MLZWWVfaYSttiGVa69K6OPbWVb39qstV8D_SujRSJR8qWMZdTHoopetKJceo47_xoKONSTq1t82K0Fk_7LzaJR0fFveM7KN-NO1nxee3bz5dvK8ur94tL84vK8UalKpOtpBRxBGR1ACiWkIJxZBzUwOjO9Qa0hDEpepUi0CNsKGUKyZr0rFWIYzPiqcH323vo5iGFwVsakRrygnLxPJAdF5uxDbYQYad8NKK3wUfVkKGZFWvBa851twACCkgEpi2IxhixBhlSDUIZq9X02tjO-hOaZeC7Gem8xtn12LlvwtCECWYZINnk0Hw30Yd019anqiVzF1ZZ3w2U4ONSpyT3BDAvKaZWvyByqvTg1U5Psbm-kzwYibITNLXaZW_Oorlxw__z159mbPPj9i1ln1aR9-PyXoX5yA5gCr4GIM2t5ODQOzTfzMNsU-_mNKfZU-Op34ruok7_gXT1gDg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982585746</pqid></control><display><type>article</type><title>Doxorubicin impairs the insulin-like growth factor-1 system and causes insulin-like growth factor-1 resistance in cardiomyocytes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fabbi, Patrizia ; Spallarossa, Paolo ; Garibaldi, Silvano ; Barisione, Chiara ; Mura, Marzia ; Altieri, Paola ; Rebesco, Barbara ; Monti, Maria Gaia ; Canepa, Marco ; Ghigliotti, Giorgio ; Brunelli, Claudio ; Ameri, Pietro</creator><contributor>Mukhopadhyay, Partha</contributor><creatorcontrib>Fabbi, Patrizia ; Spallarossa, Paolo ; Garibaldi, Silvano ; Barisione, Chiara ; Mura, Marzia ; Altieri, Paola ; Rebesco, Barbara ; Monti, Maria Gaia ; Canepa, Marco ; Ghigliotti, Giorgio ; Brunelli, Claudio ; Ameri, Pietro ; Mukhopadhyay, Partha</creatorcontrib><description>Insulin-like growth factor-1 (IGF-1) promotes the survival of cardiomyocytes by activating type 1 IGF receptor (IGF-1R). Within the myocardium, IGF-1 action is modulated by IGF binding protein-3 (IGFBP-3), which sequesters IGF-1 away from IGF-1R. Since cardiomyocyte apoptosis is implicated in anthracycline cardiotoxicity, we investigated the effects of the anthracycline, doxorubicin, on the IGF-1 system in H9c2 cardiomyocytes. Besides inducing apoptosis, concentrations of doxorubicin comparable to those observed in patients after bolus infusion (0.1-1 µM) caused a progressive decrease in IGF-1R and increase in IGFBP-3 expression. Exogenous IGF-1 was capable to rescue cardiomyocytes from apoptosis triggered by 0.1 and 0.5 µM, but not 1 µM doxorubicin. The loss of response to IGF-1 was paralleled by a significant reduction in IGF-1 availability and signaling, as assessed by free hormone levels in conditioned media and Akt phosphorylation in cell lysates, respectively. Doxorubicin also dose-dependently induced p53, which is known to repress the transcription of IGF1R and induce that of IGFBP3. Pre-treatment with the p53 inhibitor, pifithrin-α, prevented apoptosis and the changes in IGF-1R and IGFBP-3 elicited by doxorubicin. The decrease in IGF-1R and increase in IGFBP-3, as well as apoptosis, were also antagonized by pre-treatment with the antioxidant agents, N-acetylcysteine, dexrazoxane, and carvedilol. Doxorubicin down-regulates IGF-1R and up-regulates IGFBP-3 via p53 and oxidative stress in H9c2 cells. This leads to resistance to IGF-1 that may contribute to doxorubicin-initiated apoptosis. Further studies are needed to confirm these findings in human cardiomyocytes and explore the possibility of manipulating the IGF-1 axis to protect against anthracycline cardiotoxicity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0124643</identifier><identifier>PMID: 25955698</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetylcysteine ; AKT protein ; Animals ; Annexin A5 - metabolism ; Anthracycline ; Anthracyclines ; Antioxidants ; Antioxidants - pharmacology ; Apoptosis ; Apoptosis - drug effects ; Biology ; Cardiomyocytes ; Cardiomyopathy ; Cardiotoxicity ; Caspase 3 - metabolism ; Caspase 7 - metabolism ; Cell Line ; Conditioning ; Deoxyribonucleic acid ; DNA ; Doxorubicin ; Doxorubicin - pharmacology ; Fibroblasts ; Flow cytometry ; Heart ; Heart cells ; In Situ Nick-End Labeling ; Insulin ; Insulin-Like Growth Factor Binding Protein 3 - metabolism ; Insulin-like growth factor I ; Insulin-Like Growth Factor I - metabolism ; Insulin-Like Growth Factor I - pharmacology ; Insulin-like growth factor-binding protein 3 ; Insulin-like growth factors ; Internal medicine ; Intracellular Space - metabolism ; Lysates ; Medicine ; Myocardium ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Oxidation resistance ; Oxidative stress ; p53 Protein ; Phosphorylation ; Propidium - metabolism ; Protein binding ; Proteins ; Rats ; Razoxane ; Receptor, IGF Type 1 - metabolism ; Resistance factors ; Signal Transduction - drug effects ; Signaling ; Transcription ; Tumor proteins ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>PloS one, 2015-05, Vol.10 (5), p.e0124643</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Fabbi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Fabbi et al 2015 Fabbi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-dab1652724a5f04cb45453177f80fed2bf49427acdcb20823f557c6a84d6bc233</citedby><cites>FETCH-LOGICAL-c692t-dab1652724a5f04cb45453177f80fed2bf49427acdcb20823f557c6a84d6bc233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425434/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425434/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25955698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mukhopadhyay, Partha</contributor><creatorcontrib>Fabbi, Patrizia</creatorcontrib><creatorcontrib>Spallarossa, Paolo</creatorcontrib><creatorcontrib>Garibaldi, Silvano</creatorcontrib><creatorcontrib>Barisione, Chiara</creatorcontrib><creatorcontrib>Mura, Marzia</creatorcontrib><creatorcontrib>Altieri, Paola</creatorcontrib><creatorcontrib>Rebesco, Barbara</creatorcontrib><creatorcontrib>Monti, Maria Gaia</creatorcontrib><creatorcontrib>Canepa, Marco</creatorcontrib><creatorcontrib>Ghigliotti, Giorgio</creatorcontrib><creatorcontrib>Brunelli, Claudio</creatorcontrib><creatorcontrib>Ameri, Pietro</creatorcontrib><title>Doxorubicin impairs the insulin-like growth factor-1 system and causes insulin-like growth factor-1 resistance in cardiomyocytes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Insulin-like growth factor-1 (IGF-1) promotes the survival of cardiomyocytes by activating type 1 IGF receptor (IGF-1R). Within the myocardium, IGF-1 action is modulated by IGF binding protein-3 (IGFBP-3), which sequesters IGF-1 away from IGF-1R. Since cardiomyocyte apoptosis is implicated in anthracycline cardiotoxicity, we investigated the effects of the anthracycline, doxorubicin, on the IGF-1 system in H9c2 cardiomyocytes. Besides inducing apoptosis, concentrations of doxorubicin comparable to those observed in patients after bolus infusion (0.1-1 µM) caused a progressive decrease in IGF-1R and increase in IGFBP-3 expression. Exogenous IGF-1 was capable to rescue cardiomyocytes from apoptosis triggered by 0.1 and 0.5 µM, but not 1 µM doxorubicin. The loss of response to IGF-1 was paralleled by a significant reduction in IGF-1 availability and signaling, as assessed by free hormone levels in conditioned media and Akt phosphorylation in cell lysates, respectively. Doxorubicin also dose-dependently induced p53, which is known to repress the transcription of IGF1R and induce that of IGFBP3. Pre-treatment with the p53 inhibitor, pifithrin-α, prevented apoptosis and the changes in IGF-1R and IGFBP-3 elicited by doxorubicin. The decrease in IGF-1R and increase in IGFBP-3, as well as apoptosis, were also antagonized by pre-treatment with the antioxidant agents, N-acetylcysteine, dexrazoxane, and carvedilol. Doxorubicin down-regulates IGF-1R and up-regulates IGFBP-3 via p53 and oxidative stress in H9c2 cells. This leads to resistance to IGF-1 that may contribute to doxorubicin-initiated apoptosis. Further studies are needed to confirm these findings in human cardiomyocytes and explore the possibility of manipulating the IGF-1 axis to protect against anthracycline cardiotoxicity.</description><subject>Acetylcysteine</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Annexin A5 - metabolism</subject><subject>Anthracycline</subject><subject>Anthracyclines</subject><subject>Antioxidants</subject><subject>Antioxidants - pharmacology</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biology</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathy</subject><subject>Cardiotoxicity</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase 7 - metabolism</subject><subject>Cell Line</subject><subject>Conditioning</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Doxorubicin</subject><subject>Doxorubicin - pharmacology</subject><subject>Fibroblasts</subject><subject>Flow cytometry</subject><subject>Heart</subject><subject>Heart cells</subject><subject>In Situ Nick-End Labeling</subject><subject>Insulin</subject><subject>Insulin-Like Growth Factor Binding Protein 3 - metabolism</subject><subject>Insulin-like growth factor I</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Insulin-Like Growth Factor I - pharmacology</subject><subject>Insulin-like growth factor-binding protein 3</subject><subject>Insulin-like growth factors</subject><subject>Internal medicine</subject><subject>Intracellular Space - metabolism</subject><subject>Lysates</subject><subject>Medicine</subject><subject>Myocardium</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Oxidation resistance</subject><subject>Oxidative stress</subject><subject>p53 Protein</subject><subject>Phosphorylation</subject><subject>Propidium - metabolism</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Rats</subject><subject>Razoxane</subject><subject>Receptor, IGF Type 1 - metabolism</subject><subject>Resistance factors</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Transcription</subject><subject>Tumor proteins</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguBFx3ynvRGW9WtgYcGv25CmyUzGNhmTVHfu_OlmnO4yBRXJRcLJ8745nLxF8RiCBcQcvtz4MTjZL7be6QWAiDCC7xSnsMGoYgjgu0fnk-JBjBsAKK4Zu1-cINpQypr6tPj52l_7MLZWWVfaYSttiGVa69K6OPbWVb39qstV8D_SujRSJR8qWMZdTHoopetKJceo47_xoKONSTq1t82K0Fk_7LzaJR0fFveM7KN-NO1nxee3bz5dvK8ur94tL84vK8UalKpOtpBRxBGR1ACiWkIJxZBzUwOjO9Qa0hDEpepUi0CNsKGUKyZr0rFWIYzPiqcH323vo5iGFwVsakRrygnLxPJAdF5uxDbYQYad8NKK3wUfVkKGZFWvBa851twACCkgEpi2IxhixBhlSDUIZq9X02tjO-hOaZeC7Gem8xtn12LlvwtCECWYZINnk0Hw30Yd019anqiVzF1ZZ3w2U4ONSpyT3BDAvKaZWvyByqvTg1U5Psbm-kzwYibITNLXaZW_Oorlxw__z159mbPPj9i1ln1aR9-PyXoX5yA5gCr4GIM2t5ODQOzTfzMNsU-_mNKfZU-Op34ruok7_gXT1gDg</recordid><startdate>20150508</startdate><enddate>20150508</enddate><creator>Fabbi, Patrizia</creator><creator>Spallarossa, Paolo</creator><creator>Garibaldi, Silvano</creator><creator>Barisione, Chiara</creator><creator>Mura, Marzia</creator><creator>Altieri, Paola</creator><creator>Rebesco, Barbara</creator><creator>Monti, Maria Gaia</creator><creator>Canepa, Marco</creator><creator>Ghigliotti, Giorgio</creator><creator>Brunelli, Claudio</creator><creator>Ameri, Pietro</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150508</creationdate><title>Doxorubicin impairs the insulin-like growth factor-1 system and causes insulin-like growth factor-1 resistance in cardiomyocytes</title><author>Fabbi, Patrizia ; Spallarossa, Paolo ; Garibaldi, Silvano ; Barisione, Chiara ; Mura, Marzia ; Altieri, Paola ; Rebesco, Barbara ; Monti, Maria Gaia ; Canepa, Marco ; Ghigliotti, Giorgio ; Brunelli, Claudio ; Ameri, Pietro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-dab1652724a5f04cb45453177f80fed2bf49427acdcb20823f557c6a84d6bc233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acetylcysteine</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Annexin A5 - metabolism</topic><topic>Anthracycline</topic><topic>Anthracyclines</topic><topic>Antioxidants</topic><topic>Antioxidants - pharmacology</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biology</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathy</topic><topic>Cardiotoxicity</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase 7 - metabolism</topic><topic>Cell Line</topic><topic>Conditioning</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Doxorubicin</topic><topic>Doxorubicin - pharmacology</topic><topic>Fibroblasts</topic><topic>Flow cytometry</topic><topic>Heart</topic><topic>Heart cells</topic><topic>In Situ Nick-End Labeling</topic><topic>Insulin</topic><topic>Insulin-Like Growth Factor Binding Protein 3 - metabolism</topic><topic>Insulin-like growth factor I</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Insulin-Like Growth Factor I - pharmacology</topic><topic>Insulin-like growth factor-binding protein 3</topic><topic>Insulin-like growth factors</topic><topic>Internal medicine</topic><topic>Intracellular Space - metabolism</topic><topic>Lysates</topic><topic>Medicine</topic><topic>Myocardium</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Oxidation resistance</topic><topic>Oxidative stress</topic><topic>p53 Protein</topic><topic>Phosphorylation</topic><topic>Propidium - metabolism</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Rats</topic><topic>Razoxane</topic><topic>Receptor, IGF Type 1 - metabolism</topic><topic>Resistance factors</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Transcription</topic><topic>Tumor proteins</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fabbi, Patrizia</creatorcontrib><creatorcontrib>Spallarossa, Paolo</creatorcontrib><creatorcontrib>Garibaldi, Silvano</creatorcontrib><creatorcontrib>Barisione, Chiara</creatorcontrib><creatorcontrib>Mura, Marzia</creatorcontrib><creatorcontrib>Altieri, Paola</creatorcontrib><creatorcontrib>Rebesco, Barbara</creatorcontrib><creatorcontrib>Monti, Maria Gaia</creatorcontrib><creatorcontrib>Canepa, Marco</creatorcontrib><creatorcontrib>Ghigliotti, Giorgio</creatorcontrib><creatorcontrib>Brunelli, Claudio</creatorcontrib><creatorcontrib>Ameri, Pietro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabbi, Patrizia</au><au>Spallarossa, Paolo</au><au>Garibaldi, Silvano</au><au>Barisione, Chiara</au><au>Mura, Marzia</au><au>Altieri, Paola</au><au>Rebesco, Barbara</au><au>Monti, Maria Gaia</au><au>Canepa, Marco</au><au>Ghigliotti, Giorgio</au><au>Brunelli, Claudio</au><au>Ameri, Pietro</au><au>Mukhopadhyay, Partha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doxorubicin impairs the insulin-like growth factor-1 system and causes insulin-like growth factor-1 resistance in cardiomyocytes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-05-08</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>e0124643</spage><pages>e0124643-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Insulin-like growth factor-1 (IGF-1) promotes the survival of cardiomyocytes by activating type 1 IGF receptor (IGF-1R). Within the myocardium, IGF-1 action is modulated by IGF binding protein-3 (IGFBP-3), which sequesters IGF-1 away from IGF-1R. Since cardiomyocyte apoptosis is implicated in anthracycline cardiotoxicity, we investigated the effects of the anthracycline, doxorubicin, on the IGF-1 system in H9c2 cardiomyocytes. Besides inducing apoptosis, concentrations of doxorubicin comparable to those observed in patients after bolus infusion (0.1-1 µM) caused a progressive decrease in IGF-1R and increase in IGFBP-3 expression. Exogenous IGF-1 was capable to rescue cardiomyocytes from apoptosis triggered by 0.1 and 0.5 µM, but not 1 µM doxorubicin. The loss of response to IGF-1 was paralleled by a significant reduction in IGF-1 availability and signaling, as assessed by free hormone levels in conditioned media and Akt phosphorylation in cell lysates, respectively. Doxorubicin also dose-dependently induced p53, which is known to repress the transcription of IGF1R and induce that of IGFBP3. Pre-treatment with the p53 inhibitor, pifithrin-α, prevented apoptosis and the changes in IGF-1R and IGFBP-3 elicited by doxorubicin. The decrease in IGF-1R and increase in IGFBP-3, as well as apoptosis, were also antagonized by pre-treatment with the antioxidant agents, N-acetylcysteine, dexrazoxane, and carvedilol. Doxorubicin down-regulates IGF-1R and up-regulates IGFBP-3 via p53 and oxidative stress in H9c2 cells. This leads to resistance to IGF-1 that may contribute to doxorubicin-initiated apoptosis. Further studies are needed to confirm these findings in human cardiomyocytes and explore the possibility of manipulating the IGF-1 axis to protect against anthracycline cardiotoxicity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25955698</pmid><doi>10.1371/journal.pone.0124643</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-05, Vol.10 (5), p.e0124643
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1982585746
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acetylcysteine
AKT protein
Animals
Annexin A5 - metabolism
Anthracycline
Anthracyclines
Antioxidants
Antioxidants - pharmacology
Apoptosis
Apoptosis - drug effects
Biology
Cardiomyocytes
Cardiomyopathy
Cardiotoxicity
Caspase 3 - metabolism
Caspase 7 - metabolism
Cell Line
Conditioning
Deoxyribonucleic acid
DNA
Doxorubicin
Doxorubicin - pharmacology
Fibroblasts
Flow cytometry
Heart
Heart cells
In Situ Nick-End Labeling
Insulin
Insulin-Like Growth Factor Binding Protein 3 - metabolism
Insulin-like growth factor I
Insulin-Like Growth Factor I - metabolism
Insulin-Like Growth Factor I - pharmacology
Insulin-like growth factor-binding protein 3
Insulin-like growth factors
Internal medicine
Intracellular Space - metabolism
Lysates
Medicine
Myocardium
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Oxidation resistance
Oxidative stress
p53 Protein
Phosphorylation
Propidium - metabolism
Protein binding
Proteins
Rats
Razoxane
Receptor, IGF Type 1 - metabolism
Resistance factors
Signal Transduction - drug effects
Signaling
Transcription
Tumor proteins
Tumor Suppressor Protein p53 - metabolism
title Doxorubicin impairs the insulin-like growth factor-1 system and causes insulin-like growth factor-1 resistance in cardiomyocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doxorubicin%20impairs%20the%20insulin-like%20growth%20factor-1%20system%20and%20causes%20insulin-like%20growth%20factor-1%20resistance%20in%20cardiomyocytes&rft.jtitle=PloS%20one&rft.au=Fabbi,%20Patrizia&rft.date=2015-05-08&rft.volume=10&rft.issue=5&rft.spage=e0124643&rft.pages=e0124643-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0124643&rft_dat=%3Cgale_plos_%3EA413203785%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982585746&rft_id=info:pmid/25955698&rft_galeid=A413203785&rft_doaj_id=oai_doaj_org_article_7873e7f011504a0fbd4313266562c921&rfr_iscdi=true