Transcriptome profiling of sugarcane roots in response to low potassium stress

Sugarcane is the most important crop for supplying sugar. Due to its high biomass, sugarcane needs to absorb a large amount of potassium (K) throughout its lifecycle. In South China, a deficiency of K available in soil restricts the production of sugarcane. Increasing the tolerance of sugarcane to l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2015-05, Vol.10 (5), p.e0126306-e0126306
Hauptverfasser: Zeng, Qiaoying, Ling, Qiuping, Fan, Lina, Li, Yu, Hu, Fei, Chen, Jianwen, Huang, Zhenrui, Deng, Haihua, Li, Qiwei, Qi, Yongwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0126306
container_issue 5
container_start_page e0126306
container_title PloS one
container_volume 10
creator Zeng, Qiaoying
Ling, Qiuping
Fan, Lina
Li, Yu
Hu, Fei
Chen, Jianwen
Huang, Zhenrui
Deng, Haihua
Li, Qiwei
Qi, Yongwen
description Sugarcane is the most important crop for supplying sugar. Due to its high biomass, sugarcane needs to absorb a large amount of potassium (K) throughout its lifecycle. In South China, a deficiency of K available in soil restricts the production of sugarcane. Increasing the tolerance of sugarcane to low-K will be an effective approach for improving survival of the crop in this area. However, there is little information regarding the mechanism of tolerance to low-K stress in sugarcane. In this study, a customized microarray was used to analyze the changes in the level of transcripts of sugarcane genes 8 h, 24 h and 72 h after exposure to low-K conditions. We identified a total of 4153 genes that were differentially expressed in at least one of the three time points. The number of genes responding to low-K stress at 72 h was almost 2-fold more than the numbers at 8 h and 24 h. Gene ontology (GO) analysis revealed that many genes involved in metabolic, developmental and biological regulatory processes displayed changes in the level of transcripts in response to low-K stress. Additionally, we detected differential expression of transcription factors, transporters, kinases, oxidative stress-related genes and genes in Ca+ and ethylene signaling pathways; these proteins might play crucial roles in improving the tolerance of sugarcane to low-K stress. The results of this study will help to better understand the molecular mechanisms of sugarcane tolerance to low-K.
doi_str_mv 10.1371/journal.pone.0126306
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1982584093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A431992248</galeid><doaj_id>oai_doaj_org_article_43492722d9474f9081963fc9cacfb380</doaj_id><sourcerecordid>A431992248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-43eab356caa8931b0bba0564383671b419e285a4766c69f14aea922e92fd882d3</originalsourceid><addsrcrecordid>eNqNkl2L1DAYhYso7rr6D0QLgujFjPlqmtwIy-LHwOKCrt6Gt2naydA2NUn9-PdmnO4ylb2QXrQkzzlvc3Ky7ClGa0xL_GbnJj9Atx7dYNYIE04Rv5edYknJihNE7x99n2SPQtghVFDB-cPshBSyKEpenGafrj0MQXs7RtebfPSusZ0d2tw1eZha8BoGk3vnYsjtkHsT0rxg8ujyzv3MRxchBDv1eYhpLzzOHjTQBfNkfp9lX9-_u774uLq8-rC5OL9caS5JXDFqoKIF1wBCUlyhqgJUcEYF5SWuGJaGiAJYyXkSNJiBAUmIkaSphSA1PcueH3zHzgU1RxEUloIUgiFJE7E5ELWDnRq97cH_Vg6s-rvgfKvAR6s7oxhlkpSE1JKVrJFIYMlpo6UG3VRUoOT1dp42Vb2ptRmih25hutwZ7Fa17odijBSM4mTwajbw7vtkQlS9Ddp0XQrXTem_uUAElQKJhL74B737dDPVQjqAHRqX5uq9qTpPA2UKi-291ndQ6alNb3XqTbprsxS8XggSE82v2MIUgtp8-fz_7NW3JfvyiN0a6OI2uG6KNpVpCbIDqL0LwZvmNmSM1L72N2mofe3VXPske3Z8Qbeim57TPx7-_Gg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982584093</pqid></control><display><type>article</type><title>Transcriptome profiling of sugarcane roots in response to low potassium stress</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Zeng, Qiaoying ; Ling, Qiuping ; Fan, Lina ; Li, Yu ; Hu, Fei ; Chen, Jianwen ; Huang, Zhenrui ; Deng, Haihua ; Li, Qiwei ; Qi, Yongwen</creator><creatorcontrib>Zeng, Qiaoying ; Ling, Qiuping ; Fan, Lina ; Li, Yu ; Hu, Fei ; Chen, Jianwen ; Huang, Zhenrui ; Deng, Haihua ; Li, Qiwei ; Qi, Yongwen</creatorcontrib><description>Sugarcane is the most important crop for supplying sugar. Due to its high biomass, sugarcane needs to absorb a large amount of potassium (K) throughout its lifecycle. In South China, a deficiency of K available in soil restricts the production of sugarcane. Increasing the tolerance of sugarcane to low-K will be an effective approach for improving survival of the crop in this area. However, there is little information regarding the mechanism of tolerance to low-K stress in sugarcane. In this study, a customized microarray was used to analyze the changes in the level of transcripts of sugarcane genes 8 h, 24 h and 72 h after exposure to low-K conditions. We identified a total of 4153 genes that were differentially expressed in at least one of the three time points. The number of genes responding to low-K stress at 72 h was almost 2-fold more than the numbers at 8 h and 24 h. Gene ontology (GO) analysis revealed that many genes involved in metabolic, developmental and biological regulatory processes displayed changes in the level of transcripts in response to low-K stress. Additionally, we detected differential expression of transcription factors, transporters, kinases, oxidative stress-related genes and genes in Ca+ and ethylene signaling pathways; these proteins might play crucial roles in improving the tolerance of sugarcane to low-K stress. The results of this study will help to better understand the molecular mechanisms of sugarcane tolerance to low-K.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0126306</identifier><identifier>PMID: 25955765</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Arabidopsis ; Barley ; Biological activity ; Brassica napus ; Crops ; DNA binding proteins ; DNA microarrays ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Plant ; Gene Ontology ; Genes ; Glycine max ; Homeostasis ; Industrial research ; Kinases ; Life cycle analysis ; Metabolism ; Molecular modelling ; Nitrates ; Oligonucleotide Array Sequence Analysis - methods ; Oryza ; Oxidative stress ; Physiology ; Plant Proteins - genetics ; Plant Roots - genetics ; Plant Roots - growth &amp; development ; Potassium ; Potassium - metabolism ; Proteins ; Saccharum - anatomy &amp; histology ; Saccharum - genetics ; Saccharum - growth &amp; development ; Saccharum officinarum ; Signal transduction ; Signaling ; Stress, Physiological ; Sugar ; Sugarcane ; Transcription (Genetics) ; Transcription factors</subject><ispartof>PloS one, 2015-05, Vol.10 (5), p.e0126306-e0126306</ispartof><rights>COPYRIGHT 2015 Public Library of Science</rights><rights>2015 Zeng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2015 Zeng et al 2015 Zeng et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-43eab356caa8931b0bba0564383671b419e285a4766c69f14aea922e92fd882d3</citedby><cites>FETCH-LOGICAL-c692t-43eab356caa8931b0bba0564383671b419e285a4766c69f14aea922e92fd882d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425431/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425431/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25955765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Qiaoying</creatorcontrib><creatorcontrib>Ling, Qiuping</creatorcontrib><creatorcontrib>Fan, Lina</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Hu, Fei</creatorcontrib><creatorcontrib>Chen, Jianwen</creatorcontrib><creatorcontrib>Huang, Zhenrui</creatorcontrib><creatorcontrib>Deng, Haihua</creatorcontrib><creatorcontrib>Li, Qiwei</creatorcontrib><creatorcontrib>Qi, Yongwen</creatorcontrib><title>Transcriptome profiling of sugarcane roots in response to low potassium stress</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Sugarcane is the most important crop for supplying sugar. Due to its high biomass, sugarcane needs to absorb a large amount of potassium (K) throughout its lifecycle. In South China, a deficiency of K available in soil restricts the production of sugarcane. Increasing the tolerance of sugarcane to low-K will be an effective approach for improving survival of the crop in this area. However, there is little information regarding the mechanism of tolerance to low-K stress in sugarcane. In this study, a customized microarray was used to analyze the changes in the level of transcripts of sugarcane genes 8 h, 24 h and 72 h after exposure to low-K conditions. We identified a total of 4153 genes that were differentially expressed in at least one of the three time points. The number of genes responding to low-K stress at 72 h was almost 2-fold more than the numbers at 8 h and 24 h. Gene ontology (GO) analysis revealed that many genes involved in metabolic, developmental and biological regulatory processes displayed changes in the level of transcripts in response to low-K stress. Additionally, we detected differential expression of transcription factors, transporters, kinases, oxidative stress-related genes and genes in Ca+ and ethylene signaling pathways; these proteins might play crucial roles in improving the tolerance of sugarcane to low-K stress. The results of this study will help to better understand the molecular mechanisms of sugarcane tolerance to low-K.</description><subject>Analysis</subject><subject>Arabidopsis</subject><subject>Barley</subject><subject>Biological activity</subject><subject>Brassica napus</subject><subject>Crops</subject><subject>DNA binding proteins</subject><subject>DNA microarrays</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Ontology</subject><subject>Genes</subject><subject>Glycine max</subject><subject>Homeostasis</subject><subject>Industrial research</subject><subject>Kinases</subject><subject>Life cycle analysis</subject><subject>Metabolism</subject><subject>Molecular modelling</subject><subject>Nitrates</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Oryza</subject><subject>Oxidative stress</subject><subject>Physiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - growth &amp; development</subject><subject>Potassium</subject><subject>Potassium - metabolism</subject><subject>Proteins</subject><subject>Saccharum - anatomy &amp; histology</subject><subject>Saccharum - genetics</subject><subject>Saccharum - growth &amp; development</subject><subject>Saccharum officinarum</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Stress, Physiological</subject><subject>Sugar</subject><subject>Sugarcane</subject><subject>Transcription (Genetics)</subject><subject>Transcription factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAYhYso7rr6D0QLgujFjPlqmtwIy-LHwOKCrt6Gt2naydA2NUn9-PdmnO4ylb2QXrQkzzlvc3Ky7ClGa0xL_GbnJj9Atx7dYNYIE04Rv5edYknJihNE7x99n2SPQtghVFDB-cPshBSyKEpenGafrj0MQXs7RtebfPSusZ0d2tw1eZha8BoGk3vnYsjtkHsT0rxg8ujyzv3MRxchBDv1eYhpLzzOHjTQBfNkfp9lX9-_u774uLq8-rC5OL9caS5JXDFqoKIF1wBCUlyhqgJUcEYF5SWuGJaGiAJYyXkSNJiBAUmIkaSphSA1PcueH3zHzgU1RxEUloIUgiFJE7E5ELWDnRq97cH_Vg6s-rvgfKvAR6s7oxhlkpSE1JKVrJFIYMlpo6UG3VRUoOT1dp42Vb2ptRmih25hutwZ7Fa17odijBSM4mTwajbw7vtkQlS9Ddp0XQrXTem_uUAElQKJhL74B737dDPVQjqAHRqX5uq9qTpPA2UKi-291ndQ6alNb3XqTbprsxS8XggSE82v2MIUgtp8-fz_7NW3JfvyiN0a6OI2uG6KNpVpCbIDqL0LwZvmNmSM1L72N2mofe3VXPske3Z8Qbeim57TPx7-_Gg</recordid><startdate>20150508</startdate><enddate>20150508</enddate><creator>Zeng, Qiaoying</creator><creator>Ling, Qiuping</creator><creator>Fan, Lina</creator><creator>Li, Yu</creator><creator>Hu, Fei</creator><creator>Chen, Jianwen</creator><creator>Huang, Zhenrui</creator><creator>Deng, Haihua</creator><creator>Li, Qiwei</creator><creator>Qi, Yongwen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150508</creationdate><title>Transcriptome profiling of sugarcane roots in response to low potassium stress</title><author>Zeng, Qiaoying ; Ling, Qiuping ; Fan, Lina ; Li, Yu ; Hu, Fei ; Chen, Jianwen ; Huang, Zhenrui ; Deng, Haihua ; Li, Qiwei ; Qi, Yongwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-43eab356caa8931b0bba0564383671b419e285a4766c69f14aea922e92fd882d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Arabidopsis</topic><topic>Barley</topic><topic>Biological activity</topic><topic>Brassica napus</topic><topic>Crops</topic><topic>DNA binding proteins</topic><topic>DNA microarrays</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Ontology</topic><topic>Genes</topic><topic>Glycine max</topic><topic>Homeostasis</topic><topic>Industrial research</topic><topic>Kinases</topic><topic>Life cycle analysis</topic><topic>Metabolism</topic><topic>Molecular modelling</topic><topic>Nitrates</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Oryza</topic><topic>Oxidative stress</topic><topic>Physiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - growth &amp; development</topic><topic>Potassium</topic><topic>Potassium - metabolism</topic><topic>Proteins</topic><topic>Saccharum - anatomy &amp; histology</topic><topic>Saccharum - genetics</topic><topic>Saccharum - growth &amp; development</topic><topic>Saccharum officinarum</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Stress, Physiological</topic><topic>Sugar</topic><topic>Sugarcane</topic><topic>Transcription (Genetics)</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Qiaoying</creatorcontrib><creatorcontrib>Ling, Qiuping</creatorcontrib><creatorcontrib>Fan, Lina</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Hu, Fei</creatorcontrib><creatorcontrib>Chen, Jianwen</creatorcontrib><creatorcontrib>Huang, Zhenrui</creatorcontrib><creatorcontrib>Deng, Haihua</creatorcontrib><creatorcontrib>Li, Qiwei</creatorcontrib><creatorcontrib>Qi, Yongwen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Qiaoying</au><au>Ling, Qiuping</au><au>Fan, Lina</au><au>Li, Yu</au><au>Hu, Fei</au><au>Chen, Jianwen</au><au>Huang, Zhenrui</au><au>Deng, Haihua</au><au>Li, Qiwei</au><au>Qi, Yongwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome profiling of sugarcane roots in response to low potassium stress</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2015-05-08</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>e0126306</spage><epage>e0126306</epage><pages>e0126306-e0126306</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Sugarcane is the most important crop for supplying sugar. Due to its high biomass, sugarcane needs to absorb a large amount of potassium (K) throughout its lifecycle. In South China, a deficiency of K available in soil restricts the production of sugarcane. Increasing the tolerance of sugarcane to low-K will be an effective approach for improving survival of the crop in this area. However, there is little information regarding the mechanism of tolerance to low-K stress in sugarcane. In this study, a customized microarray was used to analyze the changes in the level of transcripts of sugarcane genes 8 h, 24 h and 72 h after exposure to low-K conditions. We identified a total of 4153 genes that were differentially expressed in at least one of the three time points. The number of genes responding to low-K stress at 72 h was almost 2-fold more than the numbers at 8 h and 24 h. Gene ontology (GO) analysis revealed that many genes involved in metabolic, developmental and biological regulatory processes displayed changes in the level of transcripts in response to low-K stress. Additionally, we detected differential expression of transcription factors, transporters, kinases, oxidative stress-related genes and genes in Ca+ and ethylene signaling pathways; these proteins might play crucial roles in improving the tolerance of sugarcane to low-K stress. The results of this study will help to better understand the molecular mechanisms of sugarcane tolerance to low-K.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25955765</pmid><doi>10.1371/journal.pone.0126306</doi><tpages>e0126306</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2015-05, Vol.10 (5), p.e0126306-e0126306
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1982584093
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Analysis
Arabidopsis
Barley
Biological activity
Brassica napus
Crops
DNA binding proteins
DNA microarrays
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Plant
Gene Ontology
Genes
Glycine max
Homeostasis
Industrial research
Kinases
Life cycle analysis
Metabolism
Molecular modelling
Nitrates
Oligonucleotide Array Sequence Analysis - methods
Oryza
Oxidative stress
Physiology
Plant Proteins - genetics
Plant Roots - genetics
Plant Roots - growth & development
Potassium
Potassium - metabolism
Proteins
Saccharum - anatomy & histology
Saccharum - genetics
Saccharum - growth & development
Saccharum officinarum
Signal transduction
Signaling
Stress, Physiological
Sugar
Sugarcane
Transcription (Genetics)
Transcription factors
title Transcriptome profiling of sugarcane roots in response to low potassium stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20profiling%20of%20sugarcane%20roots%20in%20response%20to%20low%20potassium%20stress&rft.jtitle=PloS%20one&rft.au=Zeng,%20Qiaoying&rft.date=2015-05-08&rft.volume=10&rft.issue=5&rft.spage=e0126306&rft.epage=e0126306&rft.pages=e0126306-e0126306&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0126306&rft_dat=%3Cgale_plos_%3EA431992248%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982584093&rft_id=info:pmid/25955765&rft_galeid=A431992248&rft_doaj_id=oai_doaj_org_article_43492722d9474f9081963fc9cacfb380&rfr_iscdi=true