Diffusion of lexical change in social media

Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to ag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-11, Vol.9 (11), p.e113114
Hauptverfasser: Eisenstein, Jacob, O'Connor, Brendan, Smith, Noah A, Xing, Eric P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e113114
container_title PloS one
container_volume 9
creator Eisenstein, Jacob
O'Connor, Brendan
Smith, Noah A
Xing, Eric P
description Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter's sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on geographical proximity and population size. However, demographic similarity - especially with regard to race - plays an even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than moving towards a single unified "netspeak" dialect, language evolution in computer-mediated communication reproduces existing fault lines in spoken American English.
doi_str_mv 10.1371/journal.pone.0113114
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1980725880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_81b27e95f87b48858f2b4d26d5ab9acc</doaj_id><sourcerecordid>1980725880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-87ecb25b054c4f4bb07615d9d364e68cdeb9d2bd275fcc9eec455b572661660f3</originalsourceid><addsrcrecordid>eNptUVtrVDEYDFKxtfoPRA_0RZDd5n55EaRWLRR8qc8h122W7Mk22SP235t2T0srPn0fX2YmMwwA7xBcIiLQ6bpMdTR5uS1jWEKECEL0BThCiuAFx5AcPNkPwevW1hAyIjl_BQ4xo1Ahzo_Ap68pxqmlMg4lDjn8Sc7kwV2bcRWGNA6tuNQPm-CTeQNeRpNbeDvPY_Dr2_nV2Y_F5c_vF2dfLheOYb5bSBGcxcxCRh2N1FooOGJeecJp4NL5YJXH1mPBonMqBEcZs0xgzrslGMkx-LDX3ebS9JyzaaQkFJhJCTviYo_wxaz1tqaNqbe6mKTvD6WutKm75HLQElksgmJRCkulZDJiSz3mnhmrjHNd6_P822R7TBfGXTX5mejzlzFd61X5rSkmgkjVBT7OArXcTKHt9CY1F3I2YyhT982x6Ma5EB168g_0_-noHuVqaa2G-GgGQX3X_QNL33Wv5-477f3TII-kh7LJX4C8q8o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980725880</pqid></control><display><type>article</type><title>Diffusion of lexical change in social media</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Worldwide Political Science Abstracts</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Eisenstein, Jacob ; O'Connor, Brendan ; Smith, Noah A ; Xing, Eric P</creator><creatorcontrib>Eisenstein, Jacob ; O'Connor, Brendan ; Smith, Noah A ; Xing, Eric P</creatorcontrib><description>Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter's sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on geographical proximity and population size. However, demographic similarity - especially with regard to race - plays an even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than moving towards a single unified "netspeak" dialect, language evolution in computer-mediated communication reproduces existing fault lines in spoken American English.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0113114</identifier><identifier>PMID: 25409166</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>American English ; Autoregressive models ; Autoregressive processes ; Biology and Life Sciences ; Changes ; Communication ; Computer and Information Sciences ; Computer mediated communication ; Computer science ; Demographics ; Demography ; Dialects ; Diffusion ; Digital media ; Ethnicity ; Fault lines ; Geography ; Geological faults ; Human communication ; Humans ; Language ; Language change ; Linguistics ; Local elections ; Models, Statistical ; Origin of language ; Phonetics ; Physical sciences ; Population (statistical) ; Population number ; Quantitative analysis ; Research and Analysis Methods ; Researchers ; Sampling ; Semantic change ; Social interactions ; Social Media ; Social networks ; Social Sciences ; Statistical analysis ; Technological change ; Terminology as Topic ; Time series ; United States - ethnology ; Vocabulary</subject><ispartof>PloS one, 2014-11, Vol.9 (11), p.e113114</ispartof><rights>2014 Eisenstein et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Eisenstein et al 2014 Eisenstein et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-87ecb25b054c4f4bb07615d9d364e68cdeb9d2bd275fcc9eec455b572661660f3</citedby><cites>FETCH-LOGICAL-c526t-87ecb25b054c4f4bb07615d9d364e68cdeb9d2bd275fcc9eec455b572661660f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237389/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237389/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,12824,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25409166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eisenstein, Jacob</creatorcontrib><creatorcontrib>O'Connor, Brendan</creatorcontrib><creatorcontrib>Smith, Noah A</creatorcontrib><creatorcontrib>Xing, Eric P</creatorcontrib><title>Diffusion of lexical change in social media</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter's sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on geographical proximity and population size. However, demographic similarity - especially with regard to race - plays an even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than moving towards a single unified "netspeak" dialect, language evolution in computer-mediated communication reproduces existing fault lines in spoken American English.</description><subject>American English</subject><subject>Autoregressive models</subject><subject>Autoregressive processes</subject><subject>Biology and Life Sciences</subject><subject>Changes</subject><subject>Communication</subject><subject>Computer and Information Sciences</subject><subject>Computer mediated communication</subject><subject>Computer science</subject><subject>Demographics</subject><subject>Demography</subject><subject>Dialects</subject><subject>Diffusion</subject><subject>Digital media</subject><subject>Ethnicity</subject><subject>Fault lines</subject><subject>Geography</subject><subject>Geological faults</subject><subject>Human communication</subject><subject>Humans</subject><subject>Language</subject><subject>Language change</subject><subject>Linguistics</subject><subject>Local elections</subject><subject>Models, Statistical</subject><subject>Origin of language</subject><subject>Phonetics</subject><subject>Physical sciences</subject><subject>Population (statistical)</subject><subject>Population number</subject><subject>Quantitative analysis</subject><subject>Research and Analysis Methods</subject><subject>Researchers</subject><subject>Sampling</subject><subject>Semantic change</subject><subject>Social interactions</subject><subject>Social Media</subject><subject>Social networks</subject><subject>Social Sciences</subject><subject>Statistical analysis</subject><subject>Technological change</subject><subject>Terminology as Topic</subject><subject>Time series</subject><subject>United States - ethnology</subject><subject>Vocabulary</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7UB</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUVtrVDEYDFKxtfoPRA_0RZDd5n55EaRWLRR8qc8h122W7Mk22SP235t2T0srPn0fX2YmMwwA7xBcIiLQ6bpMdTR5uS1jWEKECEL0BThCiuAFx5AcPNkPwevW1hAyIjl_BQ4xo1Ahzo_Ap68pxqmlMg4lDjn8Sc7kwV2bcRWGNA6tuNQPm-CTeQNeRpNbeDvPY_Dr2_nV2Y_F5c_vF2dfLheOYb5bSBGcxcxCRh2N1FooOGJeecJp4NL5YJXH1mPBonMqBEcZs0xgzrslGMkx-LDX3ebS9JyzaaQkFJhJCTviYo_wxaz1tqaNqbe6mKTvD6WutKm75HLQElksgmJRCkulZDJiSz3mnhmrjHNd6_P822R7TBfGXTX5mejzlzFd61X5rSkmgkjVBT7OArXcTKHt9CY1F3I2YyhT982x6Ma5EB168g_0_-noHuVqaa2G-GgGQX3X_QNL33Wv5-477f3TII-kh7LJX4C8q8o</recordid><startdate>20141119</startdate><enddate>20141119</enddate><creator>Eisenstein, Jacob</creator><creator>O'Connor, Brendan</creator><creator>Smith, Noah A</creator><creator>Xing, Eric P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7T9</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7UB</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141119</creationdate><title>Diffusion of lexical change in social media</title><author>Eisenstein, Jacob ; O'Connor, Brendan ; Smith, Noah A ; Xing, Eric P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-87ecb25b054c4f4bb07615d9d364e68cdeb9d2bd275fcc9eec455b572661660f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>American English</topic><topic>Autoregressive models</topic><topic>Autoregressive processes</topic><topic>Biology and Life Sciences</topic><topic>Changes</topic><topic>Communication</topic><topic>Computer and Information Sciences</topic><topic>Computer mediated communication</topic><topic>Computer science</topic><topic>Demographics</topic><topic>Demography</topic><topic>Dialects</topic><topic>Diffusion</topic><topic>Digital media</topic><topic>Ethnicity</topic><topic>Fault lines</topic><topic>Geography</topic><topic>Geological faults</topic><topic>Human communication</topic><topic>Humans</topic><topic>Language</topic><topic>Language change</topic><topic>Linguistics</topic><topic>Local elections</topic><topic>Models, Statistical</topic><topic>Origin of language</topic><topic>Phonetics</topic><topic>Physical sciences</topic><topic>Population (statistical)</topic><topic>Population number</topic><topic>Quantitative analysis</topic><topic>Research and Analysis Methods</topic><topic>Researchers</topic><topic>Sampling</topic><topic>Semantic change</topic><topic>Social interactions</topic><topic>Social Media</topic><topic>Social networks</topic><topic>Social Sciences</topic><topic>Statistical analysis</topic><topic>Technological change</topic><topic>Terminology as Topic</topic><topic>Time series</topic><topic>United States - ethnology</topic><topic>Vocabulary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisenstein, Jacob</creatorcontrib><creatorcontrib>O'Connor, Brendan</creatorcontrib><creatorcontrib>Smith, Noah A</creatorcontrib><creatorcontrib>Xing, Eric P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Worldwide Political Science Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenstein, Jacob</au><au>O'Connor, Brendan</au><au>Smith, Noah A</au><au>Xing, Eric P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion of lexical change in social media</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-11-19</date><risdate>2014</risdate><volume>9</volume><issue>11</issue><spage>e113114</spage><pages>e113114-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter's sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on geographical proximity and population size. However, demographic similarity - especially with regard to race - plays an even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than moving towards a single unified "netspeak" dialect, language evolution in computer-mediated communication reproduces existing fault lines in spoken American English.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25409166</pmid><doi>10.1371/journal.pone.0113114</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-11, Vol.9 (11), p.e113114
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1980725880
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Worldwide Political Science Abstracts; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects American English
Autoregressive models
Autoregressive processes
Biology and Life Sciences
Changes
Communication
Computer and Information Sciences
Computer mediated communication
Computer science
Demographics
Demography
Dialects
Diffusion
Digital media
Ethnicity
Fault lines
Geography
Geological faults
Human communication
Humans
Language
Language change
Linguistics
Local elections
Models, Statistical
Origin of language
Phonetics
Physical sciences
Population (statistical)
Population number
Quantitative analysis
Research and Analysis Methods
Researchers
Sampling
Semantic change
Social interactions
Social Media
Social networks
Social Sciences
Statistical analysis
Technological change
Terminology as Topic
Time series
United States - ethnology
Vocabulary
title Diffusion of lexical change in social media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20of%20lexical%20change%20in%20social%20media&rft.jtitle=PloS%20one&rft.au=Eisenstein,%20Jacob&rft.date=2014-11-19&rft.volume=9&rft.issue=11&rft.spage=e113114&rft.pages=e113114-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0113114&rft_dat=%3Cproquest_plos_%3E1980725880%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980725880&rft_id=info:pmid/25409166&rft_doaj_id=oai_doaj_org_article_81b27e95f87b48858f2b4d26d5ab9acc&rfr_iscdi=true