Frequency and fitness consequences of bacteriophage φ6 host range mutations
Viruses readily mutate and gain the ability to infect novel hosts, but few data are available regarding the number of possible host range-expanding mutations allowing infection of any given novel host, and the fitness consequences of these mutations on original and novel hosts. To gain insight into...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-11, Vol.9 (11), p.e113078-e113078 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e113078 |
---|---|
container_issue | 11 |
container_start_page | e113078 |
container_title | PloS one |
container_volume | 9 |
creator | Ford, Brian E Sun, Bruce Carpino, James Chapler, Elizabeth S Ching, Jane Choi, Yoon Jhun, Kevin Kim, Jung D Lallos, Gregory G Morgenstern, Rachelle Singh, Shalini Theja, Sai Dennehy, John J |
description | Viruses readily mutate and gain the ability to infect novel hosts, but few data are available regarding the number of possible host range-expanding mutations allowing infection of any given novel host, and the fitness consequences of these mutations on original and novel hosts. To gain insight into the process of host range expansion, we isolated and sequenced 69 independent mutants of the dsRNA bacteriophage Φ6 able to infect the novel host, Pseudomonas pseudoalcaligenes. In total, we found at least 17 unique suites of mutations among these 69 mutants. We assayed fitness for 13 of 17 mutant genotypes on P. pseudoalcaligenes and the standard laboratory host, P. phaseolicola. Mutants exhibited significantly lower fitnesses on P. pseudoalcaligenes compared to P. phaseolicola. Furthermore, 12 of the 13 assayed mutants showed reduced fitness on P. phaseolicola compared to wildtype Φ6, confirming the prevalence of antagonistic pleiotropy during host range expansion. Further experiments revealed that the mechanistic basis of these fitness differences was likely variation in host attachment ability. In addition, using computational protein modeling, we show that host-range expanding mutations occurred in hotspots on the surface of the phage's host attachment protein opposite a putative hydrophobic anchoring domain. |
doi_str_mv | 10.1371/journal.pone.0113078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1980721372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9c78e4c018a244339d8f6fdf6ac9aec1</doaj_id><sourcerecordid>1627071167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-69efbd34aed37d54d8d11c88d20142bc79a1e73c0d0feccd183c497edda1fbf53</originalsourceid><addsrcrecordid>eNptUsFuEzEQXSEQLYU_QLASFy4JHttrey9IqKJQKRIXOFuz9jjZaGMHe1OpP8Dv8UtsyLZqESfb4_fezDy9qnoNbAlCw4dtOuSIw3KfIi0ZgGDaPKnOoRV8oTgTTx_cz6oXpWwZa4RR6nl1xhvJWiHhvFpdZfp5oOhua4y-Dv0YqZTapVhOdSp1CnWHbqTcp_0G11T__qXqTSpjnTFOz91hxLGfGC-rZwGHQq_m86L6cfX5--XXxerbl-vLT6uFk40aF6ql0HkhkbzQvpHeeABnjOcMJO-cbhFIC8c8C-ScByOcbDV5jxC60IiL6u1Jdz-kYmcjioXWMM0nc_iEuD4hfMKt3ed-h_nWJuzt30LKa4t57N1AtnXakHQMDHIphWi9CSr4oNC1SA4mrY9zt0O3I-8ojhmHR6KPf2K_set0YyUXWmg9CbyfBXKaPC2j3fXF0TBgpHSY5lZcMw2gjtB3_0D_v508oVxOpWQK98MAs8dw3LHsMRx2DsdEe_NwkXvSXRrEHwdxunY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980721372</pqid></control><display><type>article</type><title>Frequency and fitness consequences of bacteriophage φ6 host range mutations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Ford, Brian E ; Sun, Bruce ; Carpino, James ; Chapler, Elizabeth S ; Ching, Jane ; Choi, Yoon ; Jhun, Kevin ; Kim, Jung D ; Lallos, Gregory G ; Morgenstern, Rachelle ; Singh, Shalini ; Theja, Sai ; Dennehy, John J</creator><creatorcontrib>Ford, Brian E ; Sun, Bruce ; Carpino, James ; Chapler, Elizabeth S ; Ching, Jane ; Choi, Yoon ; Jhun, Kevin ; Kim, Jung D ; Lallos, Gregory G ; Morgenstern, Rachelle ; Singh, Shalini ; Theja, Sai ; Dennehy, John J</creatorcontrib><description>Viruses readily mutate and gain the ability to infect novel hosts, but few data are available regarding the number of possible host range-expanding mutations allowing infection of any given novel host, and the fitness consequences of these mutations on original and novel hosts. To gain insight into the process of host range expansion, we isolated and sequenced 69 independent mutants of the dsRNA bacteriophage Φ6 able to infect the novel host, Pseudomonas pseudoalcaligenes. In total, we found at least 17 unique suites of mutations among these 69 mutants. We assayed fitness for 13 of 17 mutant genotypes on P. pseudoalcaligenes and the standard laboratory host, P. phaseolicola. Mutants exhibited significantly lower fitnesses on P. pseudoalcaligenes compared to P. phaseolicola. Furthermore, 12 of the 13 assayed mutants showed reduced fitness on P. phaseolicola compared to wildtype Φ6, confirming the prevalence of antagonistic pleiotropy during host range expansion. Further experiments revealed that the mechanistic basis of these fitness differences was likely variation in host attachment ability. In addition, using computational protein modeling, we show that host-range expanding mutations occurred in hotspots on the surface of the phage's host attachment protein opposite a putative hydrophobic anchoring domain.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0113078</identifier><identifier>PMID: 25409341</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anchoring ; Bacteriophage phi 6 - genetics ; Bacteriophage phi 6 - physiology ; Binding Sites ; Biology ; Biology and Life Sciences ; Computer applications ; Dehydrogenases ; Double-stranded RNA ; E coli ; Ecology ; Escherichia coli ; Evolution ; Fitness ; Genetic Fitness ; Genomes ; Genotypes ; Host range ; Host Specificity ; Hydrophobicity ; Models, Molecular ; Mortality ; Mutants ; Mutation ; Mutation Rate ; Pathogens ; Phages ; Pleiotropy ; Population ; Proteins ; Pseudomonas ; Pseudomonas pseudoalcaligenes - genetics ; Pseudomonas pseudoalcaligenes - virology ; Public health ; Range extension ; Reproductive fitness ; Sequence Analysis, RNA ; Severe acute respiratory syndrome ; Stem cells ; Viral Proteins - chemistry ; Viral Proteins - genetics ; Virology ; Viruses</subject><ispartof>PloS one, 2014-11, Vol.9 (11), p.e113078-e113078</ispartof><rights>2014 Ford et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Ford et al 2014 Ford et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-69efbd34aed37d54d8d11c88d20142bc79a1e73c0d0feccd183c497edda1fbf53</citedby><cites>FETCH-LOGICAL-c456t-69efbd34aed37d54d8d11c88d20142bc79a1e73c0d0feccd183c497edda1fbf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237377/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237377/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25409341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ford, Brian E</creatorcontrib><creatorcontrib>Sun, Bruce</creatorcontrib><creatorcontrib>Carpino, James</creatorcontrib><creatorcontrib>Chapler, Elizabeth S</creatorcontrib><creatorcontrib>Ching, Jane</creatorcontrib><creatorcontrib>Choi, Yoon</creatorcontrib><creatorcontrib>Jhun, Kevin</creatorcontrib><creatorcontrib>Kim, Jung D</creatorcontrib><creatorcontrib>Lallos, Gregory G</creatorcontrib><creatorcontrib>Morgenstern, Rachelle</creatorcontrib><creatorcontrib>Singh, Shalini</creatorcontrib><creatorcontrib>Theja, Sai</creatorcontrib><creatorcontrib>Dennehy, John J</creatorcontrib><title>Frequency and fitness consequences of bacteriophage φ6 host range mutations</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Viruses readily mutate and gain the ability to infect novel hosts, but few data are available regarding the number of possible host range-expanding mutations allowing infection of any given novel host, and the fitness consequences of these mutations on original and novel hosts. To gain insight into the process of host range expansion, we isolated and sequenced 69 independent mutants of the dsRNA bacteriophage Φ6 able to infect the novel host, Pseudomonas pseudoalcaligenes. In total, we found at least 17 unique suites of mutations among these 69 mutants. We assayed fitness for 13 of 17 mutant genotypes on P. pseudoalcaligenes and the standard laboratory host, P. phaseolicola. Mutants exhibited significantly lower fitnesses on P. pseudoalcaligenes compared to P. phaseolicola. Furthermore, 12 of the 13 assayed mutants showed reduced fitness on P. phaseolicola compared to wildtype Φ6, confirming the prevalence of antagonistic pleiotropy during host range expansion. Further experiments revealed that the mechanistic basis of these fitness differences was likely variation in host attachment ability. In addition, using computational protein modeling, we show that host-range expanding mutations occurred in hotspots on the surface of the phage's host attachment protein opposite a putative hydrophobic anchoring domain.</description><subject>Anchoring</subject><subject>Bacteriophage phi 6 - genetics</subject><subject>Bacteriophage phi 6 - physiology</subject><subject>Binding Sites</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Computer applications</subject><subject>Dehydrogenases</subject><subject>Double-stranded RNA</subject><subject>E coli</subject><subject>Ecology</subject><subject>Escherichia coli</subject><subject>Evolution</subject><subject>Fitness</subject><subject>Genetic Fitness</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Host range</subject><subject>Host Specificity</subject><subject>Hydrophobicity</subject><subject>Models, Molecular</subject><subject>Mortality</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Mutation Rate</subject><subject>Pathogens</subject><subject>Phages</subject><subject>Pleiotropy</subject><subject>Population</subject><subject>Proteins</subject><subject>Pseudomonas</subject><subject>Pseudomonas pseudoalcaligenes - genetics</subject><subject>Pseudomonas pseudoalcaligenes - virology</subject><subject>Public health</subject><subject>Range extension</subject><subject>Reproductive fitness</subject><subject>Sequence Analysis, RNA</subject><subject>Severe acute respiratory syndrome</subject><subject>Stem cells</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - genetics</subject><subject>Virology</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFuEzEQXSEQLYU_QLASFy4JHttrey9IqKJQKRIXOFuz9jjZaGMHe1OpP8Dv8UtsyLZqESfb4_fezDy9qnoNbAlCw4dtOuSIw3KfIi0ZgGDaPKnOoRV8oTgTTx_cz6oXpWwZa4RR6nl1xhvJWiHhvFpdZfp5oOhua4y-Dv0YqZTapVhOdSp1CnWHbqTcp_0G11T__qXqTSpjnTFOz91hxLGfGC-rZwGHQq_m86L6cfX5--XXxerbl-vLT6uFk40aF6ql0HkhkbzQvpHeeABnjOcMJO-cbhFIC8c8C-ScByOcbDV5jxC60IiL6u1Jdz-kYmcjioXWMM0nc_iEuD4hfMKt3ed-h_nWJuzt30LKa4t57N1AtnXakHQMDHIphWi9CSr4oNC1SA4mrY9zt0O3I-8ojhmHR6KPf2K_set0YyUXWmg9CbyfBXKaPC2j3fXF0TBgpHSY5lZcMw2gjtB3_0D_v508oVxOpWQK98MAs8dw3LHsMRx2DsdEe_NwkXvSXRrEHwdxunY</recordid><startdate>20141119</startdate><enddate>20141119</enddate><creator>Ford, Brian E</creator><creator>Sun, Bruce</creator><creator>Carpino, James</creator><creator>Chapler, Elizabeth S</creator><creator>Ching, Jane</creator><creator>Choi, Yoon</creator><creator>Jhun, Kevin</creator><creator>Kim, Jung D</creator><creator>Lallos, Gregory G</creator><creator>Morgenstern, Rachelle</creator><creator>Singh, Shalini</creator><creator>Theja, Sai</creator><creator>Dennehy, John J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141119</creationdate><title>Frequency and fitness consequences of bacteriophage φ6 host range mutations</title><author>Ford, Brian E ; Sun, Bruce ; Carpino, James ; Chapler, Elizabeth S ; Ching, Jane ; Choi, Yoon ; Jhun, Kevin ; Kim, Jung D ; Lallos, Gregory G ; Morgenstern, Rachelle ; Singh, Shalini ; Theja, Sai ; Dennehy, John J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-69efbd34aed37d54d8d11c88d20142bc79a1e73c0d0feccd183c497edda1fbf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anchoring</topic><topic>Bacteriophage phi 6 - genetics</topic><topic>Bacteriophage phi 6 - physiology</topic><topic>Binding Sites</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Computer applications</topic><topic>Dehydrogenases</topic><topic>Double-stranded RNA</topic><topic>E coli</topic><topic>Ecology</topic><topic>Escherichia coli</topic><topic>Evolution</topic><topic>Fitness</topic><topic>Genetic Fitness</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Host range</topic><topic>Host Specificity</topic><topic>Hydrophobicity</topic><topic>Models, Molecular</topic><topic>Mortality</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Mutation Rate</topic><topic>Pathogens</topic><topic>Phages</topic><topic>Pleiotropy</topic><topic>Population</topic><topic>Proteins</topic><topic>Pseudomonas</topic><topic>Pseudomonas pseudoalcaligenes - genetics</topic><topic>Pseudomonas pseudoalcaligenes - virology</topic><topic>Public health</topic><topic>Range extension</topic><topic>Reproductive fitness</topic><topic>Sequence Analysis, RNA</topic><topic>Severe acute respiratory syndrome</topic><topic>Stem cells</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - genetics</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ford, Brian E</creatorcontrib><creatorcontrib>Sun, Bruce</creatorcontrib><creatorcontrib>Carpino, James</creatorcontrib><creatorcontrib>Chapler, Elizabeth S</creatorcontrib><creatorcontrib>Ching, Jane</creatorcontrib><creatorcontrib>Choi, Yoon</creatorcontrib><creatorcontrib>Jhun, Kevin</creatorcontrib><creatorcontrib>Kim, Jung D</creatorcontrib><creatorcontrib>Lallos, Gregory G</creatorcontrib><creatorcontrib>Morgenstern, Rachelle</creatorcontrib><creatorcontrib>Singh, Shalini</creatorcontrib><creatorcontrib>Theja, Sai</creatorcontrib><creatorcontrib>Dennehy, John J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ford, Brian E</au><au>Sun, Bruce</au><au>Carpino, James</au><au>Chapler, Elizabeth S</au><au>Ching, Jane</au><au>Choi, Yoon</au><au>Jhun, Kevin</au><au>Kim, Jung D</au><au>Lallos, Gregory G</au><au>Morgenstern, Rachelle</au><au>Singh, Shalini</au><au>Theja, Sai</au><au>Dennehy, John J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency and fitness consequences of bacteriophage φ6 host range mutations</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-11-19</date><risdate>2014</risdate><volume>9</volume><issue>11</issue><spage>e113078</spage><epage>e113078</epage><pages>e113078-e113078</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Viruses readily mutate and gain the ability to infect novel hosts, but few data are available regarding the number of possible host range-expanding mutations allowing infection of any given novel host, and the fitness consequences of these mutations on original and novel hosts. To gain insight into the process of host range expansion, we isolated and sequenced 69 independent mutants of the dsRNA bacteriophage Φ6 able to infect the novel host, Pseudomonas pseudoalcaligenes. In total, we found at least 17 unique suites of mutations among these 69 mutants. We assayed fitness for 13 of 17 mutant genotypes on P. pseudoalcaligenes and the standard laboratory host, P. phaseolicola. Mutants exhibited significantly lower fitnesses on P. pseudoalcaligenes compared to P. phaseolicola. Furthermore, 12 of the 13 assayed mutants showed reduced fitness on P. phaseolicola compared to wildtype Φ6, confirming the prevalence of antagonistic pleiotropy during host range expansion. Further experiments revealed that the mechanistic basis of these fitness differences was likely variation in host attachment ability. In addition, using computational protein modeling, we show that host-range expanding mutations occurred in hotspots on the surface of the phage's host attachment protein opposite a putative hydrophobic anchoring domain.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25409341</pmid><doi>10.1371/journal.pone.0113078</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-11, Vol.9 (11), p.e113078-e113078 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1980721372 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Anchoring Bacteriophage phi 6 - genetics Bacteriophage phi 6 - physiology Binding Sites Biology Biology and Life Sciences Computer applications Dehydrogenases Double-stranded RNA E coli Ecology Escherichia coli Evolution Fitness Genetic Fitness Genomes Genotypes Host range Host Specificity Hydrophobicity Models, Molecular Mortality Mutants Mutation Mutation Rate Pathogens Phages Pleiotropy Population Proteins Pseudomonas Pseudomonas pseudoalcaligenes - genetics Pseudomonas pseudoalcaligenes - virology Public health Range extension Reproductive fitness Sequence Analysis, RNA Severe acute respiratory syndrome Stem cells Viral Proteins - chemistry Viral Proteins - genetics Virology Viruses |
title | Frequency and fitness consequences of bacteriophage φ6 host range mutations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20and%20fitness%20consequences%20of%20bacteriophage%20%CF%866%20host%20range%20mutations&rft.jtitle=PloS%20one&rft.au=Ford,%20Brian%20E&rft.date=2014-11-19&rft.volume=9&rft.issue=11&rft.spage=e113078&rft.epage=e113078&rft.pages=e113078-e113078&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0113078&rft_dat=%3Cproquest_plos_%3E1627071167%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980721372&rft_id=info:pmid/25409341&rft_doaj_id=oai_doaj_org_article_9c78e4c018a244339d8f6fdf6ac9aec1&rfr_iscdi=true |