Functional analysis of prognostic gene expression network genes in metastatic breast cancer models
Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivi...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-11, Vol.9 (11), p.e111813-e111813 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e111813 |
---|---|
container_issue | 11 |
container_start_page | e111813 |
container_title | PloS one |
container_volume | 9 |
creator | Geiger, Thomas R Ha, Ngoc-Han Faraji, Farhoud Michael, Helen T Rodriguez, Loren Walker, Renard C Green, Jeffery E Simpson, R Mark Hunter, Kent W |
description | Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+) breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease. |
doi_str_mv | 10.1371/journal.pone.0111813 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1979937204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_53b5b58e6454453cb37f2489165f3e63</doaj_id><sourcerecordid>1621214009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-b10ea46727121b085071522d7a9f04f92fdb1d1a7088d284c28d47c46a86ef543</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiNE1ZbSf4DAEhcuu_j744KEKgqVKvUCZ8txJkuWxA52AvTf43TTqkVc7NH4mdczo7eqXhG8JUyR9_s4p-D67RgDbDEhRBP2rDolhtGNpJg9fxSfVC9y3mMsmJbyuDqhgkltDD6t6ss5-KmLRQm5ctzmLqPYojHFXYh56jzaQQAEf8YEORcQBZh-x_TjLp9RF9AAk8uTW9g6QQmRd8FDQkNsoM8vq6PW9RnO1_us-nb56evFl831zeeri4_XGy-onDY1weC4VFQRSmqsBVZEUNooZ1rMW0PbpiYNcQpr3VDNPdUNV55LpyW0grOz6s1Bd-xjtut6siVGGcMUxQtxdSCa6PZ2TN3g0q2NrrN3iZh21qUyRg9WsFrUQoPkgnPBfM1US7k2RIqWgWRF68P621wP0HgIU3L9E9GnL6H7bnfxl-W0dKQXgXerQIo_Z8iTHbrsoe9dgDiXviUti-AYm4K-_Qf9_3T8QPkUc07QPjRDsF0sc19lF8vY1TKl7PXjQR6K7j3C_gLTVb-j</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979937204</pqid></control><display><type>article</type><title>Functional analysis of prognostic gene expression network genes in metastatic breast cancer models</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Geiger, Thomas R ; Ha, Ngoc-Han ; Faraji, Farhoud ; Michael, Helen T ; Rodriguez, Loren ; Walker, Renard C ; Green, Jeffery E ; Simpson, R Mark ; Hunter, Kent W</creator><contributor>Samant, Rajeev</contributor><creatorcontrib>Geiger, Thomas R ; Ha, Ngoc-Han ; Faraji, Farhoud ; Michael, Helen T ; Rodriguez, Loren ; Walker, Renard C ; Green, Jeffery E ; Simpson, R Mark ; Hunter, Kent W ; Samant, Rajeev</creatorcontrib><description>Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+) breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0111813</identifier><identifier>PMID: 25368990</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Apoptosis ; Biology ; Biology and Life Sciences ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cancer ; Cell cycle ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell growth ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Cellular communication ; Clustering ; Epithelial-Mesenchymal Transition ; Estrogen receptors ; Estrogens ; Etiology ; Female ; Functional analysis ; Gene expression ; Gene Knockdown Techniques ; Gene Regulatory Networks ; Genes ; Genomes ; HEK293 Cells ; Humans ; Kinases ; Laboratories ; Lung Neoplasms - genetics ; Lung Neoplasms - metabolism ; Lung Neoplasms - secondary ; Medical research ; Medicine and Health Sciences ; Metastases ; Metastasis ; Mice ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Neoplasm Transplantation ; Network analysis ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Prognosis ; Proteins ; Transcriptome ; Tumor Burden ; Tumor cells ; Tumors</subject><ispartof>PloS one, 2014-11, Vol.9 (11), p.e111813-e111813</ispartof><rights>2014. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-b10ea46727121b085071522d7a9f04f92fdb1d1a7088d284c28d47c46a86ef543</citedby><cites>FETCH-LOGICAL-c526t-b10ea46727121b085071522d7a9f04f92fdb1d1a7088d284c28d47c46a86ef543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219783/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219783/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25368990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Samant, Rajeev</contributor><creatorcontrib>Geiger, Thomas R</creatorcontrib><creatorcontrib>Ha, Ngoc-Han</creatorcontrib><creatorcontrib>Faraji, Farhoud</creatorcontrib><creatorcontrib>Michael, Helen T</creatorcontrib><creatorcontrib>Rodriguez, Loren</creatorcontrib><creatorcontrib>Walker, Renard C</creatorcontrib><creatorcontrib>Green, Jeffery E</creatorcontrib><creatorcontrib>Simpson, R Mark</creatorcontrib><creatorcontrib>Hunter, Kent W</creatorcontrib><title>Functional analysis of prognostic gene expression network genes in metastatic breast cancer models</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+) breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cellular communication</subject><subject>Clustering</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>Estrogen receptors</subject><subject>Estrogens</subject><subject>Etiology</subject><subject>Female</subject><subject>Functional analysis</subject><subject>Gene expression</subject><subject>Gene Knockdown Techniques</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genomes</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - secondary</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Neoplasm Transplantation</subject><subject>Network analysis</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Prognosis</subject><subject>Proteins</subject><subject>Transcriptome</subject><subject>Tumor Burden</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiNE1ZbSf4DAEhcuu_j744KEKgqVKvUCZ8txJkuWxA52AvTf43TTqkVc7NH4mdczo7eqXhG8JUyR9_s4p-D67RgDbDEhRBP2rDolhtGNpJg9fxSfVC9y3mMsmJbyuDqhgkltDD6t6ss5-KmLRQm5ctzmLqPYojHFXYh56jzaQQAEf8YEORcQBZh-x_TjLp9RF9AAk8uTW9g6QQmRd8FDQkNsoM8vq6PW9RnO1_us-nb56evFl831zeeri4_XGy-onDY1weC4VFQRSmqsBVZEUNooZ1rMW0PbpiYNcQpr3VDNPdUNV55LpyW0grOz6s1Bd-xjtut6siVGGcMUxQtxdSCa6PZ2TN3g0q2NrrN3iZh21qUyRg9WsFrUQoPkgnPBfM1US7k2RIqWgWRF68P621wP0HgIU3L9E9GnL6H7bnfxl-W0dKQXgXerQIo_Z8iTHbrsoe9dgDiXviUti-AYm4K-_Qf9_3T8QPkUc07QPjRDsF0sc19lF8vY1TKl7PXjQR6K7j3C_gLTVb-j</recordid><startdate>20141104</startdate><enddate>20141104</enddate><creator>Geiger, Thomas R</creator><creator>Ha, Ngoc-Han</creator><creator>Faraji, Farhoud</creator><creator>Michael, Helen T</creator><creator>Rodriguez, Loren</creator><creator>Walker, Renard C</creator><creator>Green, Jeffery E</creator><creator>Simpson, R Mark</creator><creator>Hunter, Kent W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141104</creationdate><title>Functional analysis of prognostic gene expression network genes in metastatic breast cancer models</title><author>Geiger, Thomas R ; Ha, Ngoc-Han ; Faraji, Farhoud ; Michael, Helen T ; Rodriguez, Loren ; Walker, Renard C ; Green, Jeffery E ; Simpson, R Mark ; Hunter, Kent W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-b10ea46727121b085071522d7a9f04f92fdb1d1a7088d284c28d47c46a86ef543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cellular communication</topic><topic>Clustering</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>Estrogen receptors</topic><topic>Estrogens</topic><topic>Etiology</topic><topic>Female</topic><topic>Functional analysis</topic><topic>Gene expression</topic><topic>Gene Knockdown Techniques</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genomes</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - secondary</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Neoplasm Transplantation</topic><topic>Network analysis</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Prognosis</topic><topic>Proteins</topic><topic>Transcriptome</topic><topic>Tumor Burden</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geiger, Thomas R</creatorcontrib><creatorcontrib>Ha, Ngoc-Han</creatorcontrib><creatorcontrib>Faraji, Farhoud</creatorcontrib><creatorcontrib>Michael, Helen T</creatorcontrib><creatorcontrib>Rodriguez, Loren</creatorcontrib><creatorcontrib>Walker, Renard C</creatorcontrib><creatorcontrib>Green, Jeffery E</creatorcontrib><creatorcontrib>Simpson, R Mark</creatorcontrib><creatorcontrib>Hunter, Kent W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geiger, Thomas R</au><au>Ha, Ngoc-Han</au><au>Faraji, Farhoud</au><au>Michael, Helen T</au><au>Rodriguez, Loren</au><au>Walker, Renard C</au><au>Green, Jeffery E</au><au>Simpson, R Mark</au><au>Hunter, Kent W</au><au>Samant, Rajeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional analysis of prognostic gene expression network genes in metastatic breast cancer models</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-11-04</date><risdate>2014</risdate><volume>9</volume><issue>11</issue><spage>e111813</spage><epage>e111813</epage><pages>e111813-e111813</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+) breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25368990</pmid><doi>10.1371/journal.pone.0111813</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-11, Vol.9 (11), p.e111813-e111813 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1979937204 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Apoptosis Biology Biology and Life Sciences Breast cancer Breast Neoplasms - genetics Breast Neoplasms - metabolism Breast Neoplasms - pathology Cancer Cell cycle Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell growth Cell Line, Tumor Cell Movement Cell Proliferation Cellular communication Clustering Epithelial-Mesenchymal Transition Estrogen receptors Estrogens Etiology Female Functional analysis Gene expression Gene Knockdown Techniques Gene Regulatory Networks Genes Genomes HEK293 Cells Humans Kinases Laboratories Lung Neoplasms - genetics Lung Neoplasms - metabolism Lung Neoplasms - secondary Medical research Medicine and Health Sciences Metastases Metastasis Mice Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Neoplasm Transplantation Network analysis Nuclear Proteins - genetics Nuclear Proteins - metabolism Prognosis Proteins Transcriptome Tumor Burden Tumor cells Tumors |
title | Functional analysis of prognostic gene expression network genes in metastatic breast cancer models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20analysis%20of%20prognostic%20gene%20expression%20network%20genes%20in%20metastatic%20breast%20cancer%20models&rft.jtitle=PloS%20one&rft.au=Geiger,%20Thomas%20R&rft.date=2014-11-04&rft.volume=9&rft.issue=11&rft.spage=e111813&rft.epage=e111813&rft.pages=e111813-e111813&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0111813&rft_dat=%3Cproquest_plos_%3E1621214009%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979937204&rft_id=info:pmid/25368990&rft_doaj_id=oai_doaj_org_article_53b5b58e6454453cb37f2489165f3e63&rfr_iscdi=true |