Functional analysis of prognostic gene expression network genes in metastatic breast cancer models

Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-11, Vol.9 (11), p.e111813-e111813
Hauptverfasser: Geiger, Thomas R, Ha, Ngoc-Han, Faraji, Farhoud, Michael, Helen T, Rodriguez, Loren, Walker, Renard C, Green, Jeffery E, Simpson, R Mark, Hunter, Kent W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e111813
container_issue 11
container_start_page e111813
container_title PloS one
container_volume 9
creator Geiger, Thomas R
Ha, Ngoc-Han
Faraji, Farhoud
Michael, Helen T
Rodriguez, Loren
Walker, Renard C
Green, Jeffery E
Simpson, R Mark
Hunter, Kent W
description Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+) breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.
doi_str_mv 10.1371/journal.pone.0111813
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1979937204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_53b5b58e6454453cb37f2489165f3e63</doaj_id><sourcerecordid>1621214009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-b10ea46727121b085071522d7a9f04f92fdb1d1a7088d284c28d47c46a86ef543</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiNE1ZbSf4DAEhcuu_j744KEKgqVKvUCZ8txJkuWxA52AvTf43TTqkVc7NH4mdczo7eqXhG8JUyR9_s4p-D67RgDbDEhRBP2rDolhtGNpJg9fxSfVC9y3mMsmJbyuDqhgkltDD6t6ss5-KmLRQm5ctzmLqPYojHFXYh56jzaQQAEf8YEORcQBZh-x_TjLp9RF9AAk8uTW9g6QQmRd8FDQkNsoM8vq6PW9RnO1_us-nb56evFl831zeeri4_XGy-onDY1weC4VFQRSmqsBVZEUNooZ1rMW0PbpiYNcQpr3VDNPdUNV55LpyW0grOz6s1Bd-xjtut6siVGGcMUxQtxdSCa6PZ2TN3g0q2NrrN3iZh21qUyRg9WsFrUQoPkgnPBfM1US7k2RIqWgWRF68P621wP0HgIU3L9E9GnL6H7bnfxl-W0dKQXgXerQIo_Z8iTHbrsoe9dgDiXviUti-AYm4K-_Qf9_3T8QPkUc07QPjRDsF0sc19lF8vY1TKl7PXjQR6K7j3C_gLTVb-j</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979937204</pqid></control><display><type>article</type><title>Functional analysis of prognostic gene expression network genes in metastatic breast cancer models</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Geiger, Thomas R ; Ha, Ngoc-Han ; Faraji, Farhoud ; Michael, Helen T ; Rodriguez, Loren ; Walker, Renard C ; Green, Jeffery E ; Simpson, R Mark ; Hunter, Kent W</creator><contributor>Samant, Rajeev</contributor><creatorcontrib>Geiger, Thomas R ; Ha, Ngoc-Han ; Faraji, Farhoud ; Michael, Helen T ; Rodriguez, Loren ; Walker, Renard C ; Green, Jeffery E ; Simpson, R Mark ; Hunter, Kent W ; Samant, Rajeev</creatorcontrib><description>Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+) breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0111813</identifier><identifier>PMID: 25368990</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Apoptosis ; Biology ; Biology and Life Sciences ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cancer ; Cell cycle ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell growth ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Cellular communication ; Clustering ; Epithelial-Mesenchymal Transition ; Estrogen receptors ; Estrogens ; Etiology ; Female ; Functional analysis ; Gene expression ; Gene Knockdown Techniques ; Gene Regulatory Networks ; Genes ; Genomes ; HEK293 Cells ; Humans ; Kinases ; Laboratories ; Lung Neoplasms - genetics ; Lung Neoplasms - metabolism ; Lung Neoplasms - secondary ; Medical research ; Medicine and Health Sciences ; Metastases ; Metastasis ; Mice ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Neoplasm Transplantation ; Network analysis ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Prognosis ; Proteins ; Transcriptome ; Tumor Burden ; Tumor cells ; Tumors</subject><ispartof>PloS one, 2014-11, Vol.9 (11), p.e111813-e111813</ispartof><rights>2014. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-b10ea46727121b085071522d7a9f04f92fdb1d1a7088d284c28d47c46a86ef543</citedby><cites>FETCH-LOGICAL-c526t-b10ea46727121b085071522d7a9f04f92fdb1d1a7088d284c28d47c46a86ef543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219783/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4219783/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25368990$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Samant, Rajeev</contributor><creatorcontrib>Geiger, Thomas R</creatorcontrib><creatorcontrib>Ha, Ngoc-Han</creatorcontrib><creatorcontrib>Faraji, Farhoud</creatorcontrib><creatorcontrib>Michael, Helen T</creatorcontrib><creatorcontrib>Rodriguez, Loren</creatorcontrib><creatorcontrib>Walker, Renard C</creatorcontrib><creatorcontrib>Green, Jeffery E</creatorcontrib><creatorcontrib>Simpson, R Mark</creatorcontrib><creatorcontrib>Hunter, Kent W</creatorcontrib><title>Functional analysis of prognostic gene expression network genes in metastatic breast cancer models</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+) breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cellular communication</subject><subject>Clustering</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>Estrogen receptors</subject><subject>Estrogens</subject><subject>Etiology</subject><subject>Female</subject><subject>Functional analysis</subject><subject>Gene expression</subject><subject>Gene Knockdown Techniques</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genomes</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - secondary</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Neoplasm Transplantation</subject><subject>Network analysis</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Prognosis</subject><subject>Proteins</subject><subject>Transcriptome</subject><subject>Tumor Burden</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1v1DAQhiNE1ZbSf4DAEhcuu_j744KEKgqVKvUCZ8txJkuWxA52AvTf43TTqkVc7NH4mdczo7eqXhG8JUyR9_s4p-D67RgDbDEhRBP2rDolhtGNpJg9fxSfVC9y3mMsmJbyuDqhgkltDD6t6ss5-KmLRQm5ctzmLqPYojHFXYh56jzaQQAEf8YEORcQBZh-x_TjLp9RF9AAk8uTW9g6QQmRd8FDQkNsoM8vq6PW9RnO1_us-nb56evFl831zeeri4_XGy-onDY1weC4VFQRSmqsBVZEUNooZ1rMW0PbpiYNcQpr3VDNPdUNV55LpyW0grOz6s1Bd-xjtut6siVGGcMUxQtxdSCa6PZ2TN3g0q2NrrN3iZh21qUyRg9WsFrUQoPkgnPBfM1US7k2RIqWgWRF68P621wP0HgIU3L9E9GnL6H7bnfxl-W0dKQXgXerQIo_Z8iTHbrsoe9dgDiXviUti-AYm4K-_Qf9_3T8QPkUc07QPjRDsF0sc19lF8vY1TKl7PXjQR6K7j3C_gLTVb-j</recordid><startdate>20141104</startdate><enddate>20141104</enddate><creator>Geiger, Thomas R</creator><creator>Ha, Ngoc-Han</creator><creator>Faraji, Farhoud</creator><creator>Michael, Helen T</creator><creator>Rodriguez, Loren</creator><creator>Walker, Renard C</creator><creator>Green, Jeffery E</creator><creator>Simpson, R Mark</creator><creator>Hunter, Kent W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141104</creationdate><title>Functional analysis of prognostic gene expression network genes in metastatic breast cancer models</title><author>Geiger, Thomas R ; Ha, Ngoc-Han ; Faraji, Farhoud ; Michael, Helen T ; Rodriguez, Loren ; Walker, Renard C ; Green, Jeffery E ; Simpson, R Mark ; Hunter, Kent W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-b10ea46727121b085071522d7a9f04f92fdb1d1a7088d284c28d47c46a86ef543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cellular communication</topic><topic>Clustering</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>Estrogen receptors</topic><topic>Estrogens</topic><topic>Etiology</topic><topic>Female</topic><topic>Functional analysis</topic><topic>Gene expression</topic><topic>Gene Knockdown Techniques</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genomes</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - secondary</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Neoplasm Transplantation</topic><topic>Network analysis</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Prognosis</topic><topic>Proteins</topic><topic>Transcriptome</topic><topic>Tumor Burden</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geiger, Thomas R</creatorcontrib><creatorcontrib>Ha, Ngoc-Han</creatorcontrib><creatorcontrib>Faraji, Farhoud</creatorcontrib><creatorcontrib>Michael, Helen T</creatorcontrib><creatorcontrib>Rodriguez, Loren</creatorcontrib><creatorcontrib>Walker, Renard C</creatorcontrib><creatorcontrib>Green, Jeffery E</creatorcontrib><creatorcontrib>Simpson, R Mark</creatorcontrib><creatorcontrib>Hunter, Kent W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geiger, Thomas R</au><au>Ha, Ngoc-Han</au><au>Faraji, Farhoud</au><au>Michael, Helen T</au><au>Rodriguez, Loren</au><au>Walker, Renard C</au><au>Green, Jeffery E</au><au>Simpson, R Mark</au><au>Hunter, Kent W</au><au>Samant, Rajeev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional analysis of prognostic gene expression network genes in metastatic breast cancer models</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-11-04</date><risdate>2014</risdate><volume>9</volume><issue>11</issue><spage>e111813</spage><epage>e111813</epage><pages>e111813-e111813</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Identification of conserved co-expression networks is a useful tool for clustering groups of genes enriched for common molecular or cellular functions [1]. The relative importance of genes within networks can frequently be inferred by the degree of connectivity, with those displaying high connectivity being significantly more likely to be associated with specific molecular functions [2]. Previously we utilized cross-species network analysis to identify two network modules that were significantly associated with distant metastasis free survival in breast cancer. Here, we validate one of the highly connected genes as a metastasis associated gene. Tpx2, the most highly connected gene within a proliferation network specifically prognostic for estrogen receptor positive (ER+) breast cancers, enhances metastatic disease, but in a tumor autonomous, proliferation-independent manner. Histologic analysis suggests instead that variation of TPX2 levels within disseminated tumor cells may influence the transition between dormant to actively proliferating cells in the secondary site. These results support the co-expression network approach for identification of new metastasis-associated genes to provide new information regarding the etiology of breast cancer progression and metastatic disease.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25368990</pmid><doi>10.1371/journal.pone.0111813</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-11, Vol.9 (11), p.e111813-e111813
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1979937204
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Apoptosis
Biology
Biology and Life Sciences
Breast cancer
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cancer
Cell cycle
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell growth
Cell Line, Tumor
Cell Movement
Cell Proliferation
Cellular communication
Clustering
Epithelial-Mesenchymal Transition
Estrogen receptors
Estrogens
Etiology
Female
Functional analysis
Gene expression
Gene Knockdown Techniques
Gene Regulatory Networks
Genes
Genomes
HEK293 Cells
Humans
Kinases
Laboratories
Lung Neoplasms - genetics
Lung Neoplasms - metabolism
Lung Neoplasms - secondary
Medical research
Medicine and Health Sciences
Metastases
Metastasis
Mice
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Neoplasm Transplantation
Network analysis
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Prognosis
Proteins
Transcriptome
Tumor Burden
Tumor cells
Tumors
title Functional analysis of prognostic gene expression network genes in metastatic breast cancer models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20analysis%20of%20prognostic%20gene%20expression%20network%20genes%20in%20metastatic%20breast%20cancer%20models&rft.jtitle=PloS%20one&rft.au=Geiger,%20Thomas%20R&rft.date=2014-11-04&rft.volume=9&rft.issue=11&rft.spage=e111813&rft.epage=e111813&rft.pages=e111813-e111813&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0111813&rft_dat=%3Cproquest_plos_%3E1621214009%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979937204&rft_id=info:pmid/25368990&rft_doaj_id=oai_doaj_org_article_53b5b58e6454453cb37f2489165f3e63&rfr_iscdi=true