Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection
Therapeutic use of immunoregulatory cells represents a promising approach for the treatment of uncontrolled immunity. During the last decade, myeloid-derived suppressor cells (MDSC) have emerged as novel key regulatory players in the context of tumor growth, inflammation, transplantation or autoimmu...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-06, Vol.9 (6), p.e100013-e100013 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e100013 |
---|---|
container_issue | 6 |
container_start_page | e100013 |
container_title | PloS one |
container_volume | 9 |
creator | Drujont, Lucile Carretero-Iglesia, Laura Bouchet-Delbos, Laurence Beriou, Gaelle Merieau, Emmanuel Hill, Marcelo Delneste, Yves Cuturi, Maria Cristina Louvet, Cedric |
description | Therapeutic use of immunoregulatory cells represents a promising approach for the treatment of uncontrolled immunity. During the last decade, myeloid-derived suppressor cells (MDSC) have emerged as novel key regulatory players in the context of tumor growth, inflammation, transplantation or autoimmunity. Recently, MDSC have been successfully generated in vitro from naive mouse bone marrow cells or healthy human PBMCs using minimal cytokine combinations. In this study, we aimed to evaluate the potential of adoptive transfer of such cells to control auto- and allo-immunity in the mouse. Culture of bone marrow cells with GM-CSF and IL-6 consistently yielded a majority of CD11b+Gr1hi/lo cells exhibiting strong inhibition of CD8+ T cell proliferation in vitro. However, adoptive transfer of these cells failed to alter antigen-specific CD8+ T cell proliferation and cytotoxicity in vivo. Furthermore, MDSC could not prevent the development of autoimmunity in a stringent model of type 1 diabetes. Rather, loading the cells prior to injection with a pancreatic neo-antigen peptide accelerated the development of the disease. Contrastingly, in a model of skin transplantation, repeated injection of MDSC or single injection of LPS-activated MDSC resulted in a significant prolongation of allograft survival. The beneficial effect of MDSC infusions on skin graft survival was paradoxically not explained by a decrease of donor-specific T cell response but associated with a systemic over-activation of T cells and antigen presenting cells, prominently in the spleen. Taken together, our results indicate that in vitro generated MDSC bear therapeutic potential but will require additional in vitro factors or adjunct immunosuppressive treatments to achieve safe and more robust immunomodulation upon adoptive transfer. |
doi_str_mv | 10.1371/journal.pone.0100013 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1978569604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A418552476</galeid><doaj_id>oai_doaj_org_article_e04f3d4f077447d2bb0cdd8a4cc015d0</doaj_id><sourcerecordid>A418552476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c659t-2df1fbe1b4985893e8dc7ec82f8349b1e045802dab3dbaf25c2798a3ee046d03</originalsourceid><addsrcrecordid>eNptksFu1DAQhiMEoqXwBggscSmHXezYSZwLUrUUqFTEgd4txx5vvXLiYDuL9ol4TZzutuqiKooSef75xvPrL4q3BC8JbcinjZ_CIN1y9AMsMcEYE_qsOCUtLRd1ienzR_8nxasYNxhXlNf1y-KkZG3ZYMJPi7-XW-kmmawfkDco3cL8BjnClKxCo08wJCvdXOzyJNTLEPyfhYZgt6BRvwPnrUZxGscAMfqAFDiHzn98-bX6iKT2Y8pClIIcooGA7IB6P8UM8hpcnLlySt72_TTYtENy0Eg659dBmoQCbEDNl3tdvDDSRXhz-J4VN18vb1bfF9c_v12tLq4Xqq7atCi1IaYD0rGWV7ylwLVqQPHScMrajgBmFcellh3VnTRlpcqm5ZJCLtQa07Pi_R47Oh_FweIoSNvwqm5rzLLiaq_QXm7EGGw2ZCe8tOLuwIe1kCFb50BkpqGaGdw0jDW67DqstOaSKYVJdTft82Ha1PWgVbY6SHcEPa4M9las_VYwXDWUthlwfgAE_3uCmERv4-y_HCCbLEhF65oTTOos_fCf9OntDqq1zAvYwfg8V81QccEIr6qSNTNr-YQqPxp6q3JKjM3nRw1s36CCjzGAediRYDGn-f4yYk6zOKQ5t7177M9D03186T9gDvZI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978569604</pqid></control><display><type>article</type><title>Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Drujont, Lucile ; Carretero-Iglesia, Laura ; Bouchet-Delbos, Laurence ; Beriou, Gaelle ; Merieau, Emmanuel ; Hill, Marcelo ; Delneste, Yves ; Cuturi, Maria Cristina ; Louvet, Cedric</creator><contributor>Teague, Ryan M.</contributor><creatorcontrib>Drujont, Lucile ; Carretero-Iglesia, Laura ; Bouchet-Delbos, Laurence ; Beriou, Gaelle ; Merieau, Emmanuel ; Hill, Marcelo ; Delneste, Yves ; Cuturi, Maria Cristina ; Louvet, Cedric ; Teague, Ryan M.</creatorcontrib><description>Therapeutic use of immunoregulatory cells represents a promising approach for the treatment of uncontrolled immunity. During the last decade, myeloid-derived suppressor cells (MDSC) have emerged as novel key regulatory players in the context of tumor growth, inflammation, transplantation or autoimmunity. Recently, MDSC have been successfully generated in vitro from naive mouse bone marrow cells or healthy human PBMCs using minimal cytokine combinations. In this study, we aimed to evaluate the potential of adoptive transfer of such cells to control auto- and allo-immunity in the mouse. Culture of bone marrow cells with GM-CSF and IL-6 consistently yielded a majority of CD11b+Gr1hi/lo cells exhibiting strong inhibition of CD8+ T cell proliferation in vitro. However, adoptive transfer of these cells failed to alter antigen-specific CD8+ T cell proliferation and cytotoxicity in vivo. Furthermore, MDSC could not prevent the development of autoimmunity in a stringent model of type 1 diabetes. Rather, loading the cells prior to injection with a pancreatic neo-antigen peptide accelerated the development of the disease. Contrastingly, in a model of skin transplantation, repeated injection of MDSC or single injection of LPS-activated MDSC resulted in a significant prolongation of allograft survival. The beneficial effect of MDSC infusions on skin graft survival was paradoxically not explained by a decrease of donor-specific T cell response but associated with a systemic over-activation of T cells and antigen presenting cells, prominently in the spleen. Taken together, our results indicate that in vitro generated MDSC bear therapeutic potential but will require additional in vitro factors or adjunct immunosuppressive treatments to achieve safe and more robust immunomodulation upon adoptive transfer.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0100013</identifier><identifier>PMID: 24927018</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adoptive transfer ; Adoptive Transfer - methods ; Allografts ; Analysis ; Animal models ; Animals ; Antigen-presenting cells ; Antigens ; Autoimmune Diseases - pathology ; Autoimmune Diseases - therapy ; Autoimmunity ; B cells ; Biocompatibility ; Biology and Life Sciences ; Bone marrow ; Bone Marrow Cells - physiology ; Bone Marrow Transplantation ; CD11b antigen ; CD8 antigen ; Cell activation ; Cell culture ; Cell growth ; Cell proliferation ; Cell survival ; Cells, Cultured ; Cercopithecus aethiops ; COS Cells ; Cytokines ; Cytotoxicity ; Diabetes ; Diabetes mellitus ; Disease Models, Animal ; Female ; Flow cytometry ; Graft rejection ; Graft Rejection - immunology ; Graft Rejection - pathology ; Graft Rejection - therapy ; Granulocyte-macrophage colony-stimulating factor ; Health aspects ; Immunity ; Immunology ; Immunomodulation ; Immunoregulation ; Immunosuppression ; Inflammation ; Inflammatory bowel disease ; Injection ; Interleukin 6 ; Lipopolysaccharides ; Lymphocytes ; Lymphocytes T ; Male ; Medicine and Health Sciences ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Myeloid Cells - transplantation ; Pancreas ; Prolongation ; Research and Analysis Methods ; Skin grafts ; Spleen ; Suppressor cells ; Survival ; T cell receptors ; T cells ; Toxicity ; Transplantation ; Type 1 diabetes</subject><ispartof>PloS one, 2014-06, Vol.9 (6), p.e100013-e100013</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Drujont et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Drujont et al 2014 Drujont et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c659t-2df1fbe1b4985893e8dc7ec82f8349b1e045802dab3dbaf25c2798a3ee046d03</citedby><cites>FETCH-LOGICAL-c659t-2df1fbe1b4985893e8dc7ec82f8349b1e045802dab3dbaf25c2798a3ee046d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057339/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057339/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24927018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Teague, Ryan M.</contributor><creatorcontrib>Drujont, Lucile</creatorcontrib><creatorcontrib>Carretero-Iglesia, Laura</creatorcontrib><creatorcontrib>Bouchet-Delbos, Laurence</creatorcontrib><creatorcontrib>Beriou, Gaelle</creatorcontrib><creatorcontrib>Merieau, Emmanuel</creatorcontrib><creatorcontrib>Hill, Marcelo</creatorcontrib><creatorcontrib>Delneste, Yves</creatorcontrib><creatorcontrib>Cuturi, Maria Cristina</creatorcontrib><creatorcontrib>Louvet, Cedric</creatorcontrib><title>Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Therapeutic use of immunoregulatory cells represents a promising approach for the treatment of uncontrolled immunity. During the last decade, myeloid-derived suppressor cells (MDSC) have emerged as novel key regulatory players in the context of tumor growth, inflammation, transplantation or autoimmunity. Recently, MDSC have been successfully generated in vitro from naive mouse bone marrow cells or healthy human PBMCs using minimal cytokine combinations. In this study, we aimed to evaluate the potential of adoptive transfer of such cells to control auto- and allo-immunity in the mouse. Culture of bone marrow cells with GM-CSF and IL-6 consistently yielded a majority of CD11b+Gr1hi/lo cells exhibiting strong inhibition of CD8+ T cell proliferation in vitro. However, adoptive transfer of these cells failed to alter antigen-specific CD8+ T cell proliferation and cytotoxicity in vivo. Furthermore, MDSC could not prevent the development of autoimmunity in a stringent model of type 1 diabetes. Rather, loading the cells prior to injection with a pancreatic neo-antigen peptide accelerated the development of the disease. Contrastingly, in a model of skin transplantation, repeated injection of MDSC or single injection of LPS-activated MDSC resulted in a significant prolongation of allograft survival. The beneficial effect of MDSC infusions on skin graft survival was paradoxically not explained by a decrease of donor-specific T cell response but associated with a systemic over-activation of T cells and antigen presenting cells, prominently in the spleen. Taken together, our results indicate that in vitro generated MDSC bear therapeutic potential but will require additional in vitro factors or adjunct immunosuppressive treatments to achieve safe and more robust immunomodulation upon adoptive transfer.</description><subject>Adoptive transfer</subject><subject>Adoptive Transfer - methods</subject><subject>Allografts</subject><subject>Analysis</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antigen-presenting cells</subject><subject>Antigens</subject><subject>Autoimmune Diseases - pathology</subject><subject>Autoimmune Diseases - therapy</subject><subject>Autoimmunity</subject><subject>B cells</subject><subject>Biocompatibility</subject><subject>Biology and Life Sciences</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - physiology</subject><subject>Bone Marrow Transplantation</subject><subject>CD11b antigen</subject><subject>CD8 antigen</subject><subject>Cell activation</subject><subject>Cell culture</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Cell survival</subject><subject>Cells, Cultured</subject><subject>Cercopithecus aethiops</subject><subject>COS Cells</subject><subject>Cytokines</subject><subject>Cytotoxicity</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Flow cytometry</subject><subject>Graft rejection</subject><subject>Graft Rejection - immunology</subject><subject>Graft Rejection - pathology</subject><subject>Graft Rejection - therapy</subject><subject>Granulocyte-macrophage colony-stimulating factor</subject><subject>Health aspects</subject><subject>Immunity</subject><subject>Immunology</subject><subject>Immunomodulation</subject><subject>Immunoregulation</subject><subject>Immunosuppression</subject><subject>Inflammation</subject><subject>Inflammatory bowel disease</subject><subject>Injection</subject><subject>Interleukin 6</subject><subject>Lipopolysaccharides</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Myeloid Cells - transplantation</subject><subject>Pancreas</subject><subject>Prolongation</subject><subject>Research and Analysis Methods</subject><subject>Skin grafts</subject><subject>Spleen</subject><subject>Suppressor cells</subject><subject>Survival</subject><subject>T cell receptors</subject><subject>T cells</subject><subject>Toxicity</subject><subject>Transplantation</subject><subject>Type 1 diabetes</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptksFu1DAQhiMEoqXwBggscSmHXezYSZwLUrUUqFTEgd4txx5vvXLiYDuL9ol4TZzutuqiKooSef75xvPrL4q3BC8JbcinjZ_CIN1y9AMsMcEYE_qsOCUtLRd1ienzR_8nxasYNxhXlNf1y-KkZG3ZYMJPi7-XW-kmmawfkDco3cL8BjnClKxCo08wJCvdXOzyJNTLEPyfhYZgt6BRvwPnrUZxGscAMfqAFDiHzn98-bX6iKT2Y8pClIIcooGA7IB6P8UM8hpcnLlySt72_TTYtENy0Eg659dBmoQCbEDNl3tdvDDSRXhz-J4VN18vb1bfF9c_v12tLq4Xqq7atCi1IaYD0rGWV7ylwLVqQPHScMrajgBmFcellh3VnTRlpcqm5ZJCLtQa07Pi_R47Oh_FweIoSNvwqm5rzLLiaq_QXm7EGGw2ZCe8tOLuwIe1kCFb50BkpqGaGdw0jDW67DqstOaSKYVJdTft82Ha1PWgVbY6SHcEPa4M9las_VYwXDWUthlwfgAE_3uCmERv4-y_HCCbLEhF65oTTOos_fCf9OntDqq1zAvYwfg8V81QccEIr6qSNTNr-YQqPxp6q3JKjM3nRw1s36CCjzGAediRYDGn-f4yYk6zOKQ5t7177M9D03186T9gDvZI</recordid><startdate>20140613</startdate><enddate>20140613</enddate><creator>Drujont, Lucile</creator><creator>Carretero-Iglesia, Laura</creator><creator>Bouchet-Delbos, Laurence</creator><creator>Beriou, Gaelle</creator><creator>Merieau, Emmanuel</creator><creator>Hill, Marcelo</creator><creator>Delneste, Yves</creator><creator>Cuturi, Maria Cristina</creator><creator>Louvet, Cedric</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140613</creationdate><title>Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection</title><author>Drujont, Lucile ; Carretero-Iglesia, Laura ; Bouchet-Delbos, Laurence ; Beriou, Gaelle ; Merieau, Emmanuel ; Hill, Marcelo ; Delneste, Yves ; Cuturi, Maria Cristina ; Louvet, Cedric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c659t-2df1fbe1b4985893e8dc7ec82f8349b1e045802dab3dbaf25c2798a3ee046d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adoptive transfer</topic><topic>Adoptive Transfer - methods</topic><topic>Allografts</topic><topic>Analysis</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antigen-presenting cells</topic><topic>Antigens</topic><topic>Autoimmune Diseases - pathology</topic><topic>Autoimmune Diseases - therapy</topic><topic>Autoimmunity</topic><topic>B cells</topic><topic>Biocompatibility</topic><topic>Biology and Life Sciences</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - physiology</topic><topic>Bone Marrow Transplantation</topic><topic>CD11b antigen</topic><topic>CD8 antigen</topic><topic>Cell activation</topic><topic>Cell culture</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Cell survival</topic><topic>Cells, Cultured</topic><topic>Cercopithecus aethiops</topic><topic>COS Cells</topic><topic>Cytokines</topic><topic>Cytotoxicity</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Flow cytometry</topic><topic>Graft rejection</topic><topic>Graft Rejection - immunology</topic><topic>Graft Rejection - pathology</topic><topic>Graft Rejection - therapy</topic><topic>Granulocyte-macrophage colony-stimulating factor</topic><topic>Health aspects</topic><topic>Immunity</topic><topic>Immunology</topic><topic>Immunomodulation</topic><topic>Immunoregulation</topic><topic>Immunosuppression</topic><topic>Inflammation</topic><topic>Inflammatory bowel disease</topic><topic>Injection</topic><topic>Interleukin 6</topic><topic>Lipopolysaccharides</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Myeloid Cells - transplantation</topic><topic>Pancreas</topic><topic>Prolongation</topic><topic>Research and Analysis Methods</topic><topic>Skin grafts</topic><topic>Spleen</topic><topic>Suppressor cells</topic><topic>Survival</topic><topic>T cell receptors</topic><topic>T cells</topic><topic>Toxicity</topic><topic>Transplantation</topic><topic>Type 1 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drujont, Lucile</creatorcontrib><creatorcontrib>Carretero-Iglesia, Laura</creatorcontrib><creatorcontrib>Bouchet-Delbos, Laurence</creatorcontrib><creatorcontrib>Beriou, Gaelle</creatorcontrib><creatorcontrib>Merieau, Emmanuel</creatorcontrib><creatorcontrib>Hill, Marcelo</creatorcontrib><creatorcontrib>Delneste, Yves</creatorcontrib><creatorcontrib>Cuturi, Maria Cristina</creatorcontrib><creatorcontrib>Louvet, Cedric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drujont, Lucile</au><au>Carretero-Iglesia, Laura</au><au>Bouchet-Delbos, Laurence</au><au>Beriou, Gaelle</au><au>Merieau, Emmanuel</au><au>Hill, Marcelo</au><au>Delneste, Yves</au><au>Cuturi, Maria Cristina</au><au>Louvet, Cedric</au><au>Teague, Ryan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-06-13</date><risdate>2014</risdate><volume>9</volume><issue>6</issue><spage>e100013</spage><epage>e100013</epage><pages>e100013-e100013</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Therapeutic use of immunoregulatory cells represents a promising approach for the treatment of uncontrolled immunity. During the last decade, myeloid-derived suppressor cells (MDSC) have emerged as novel key regulatory players in the context of tumor growth, inflammation, transplantation or autoimmunity. Recently, MDSC have been successfully generated in vitro from naive mouse bone marrow cells or healthy human PBMCs using minimal cytokine combinations. In this study, we aimed to evaluate the potential of adoptive transfer of such cells to control auto- and allo-immunity in the mouse. Culture of bone marrow cells with GM-CSF and IL-6 consistently yielded a majority of CD11b+Gr1hi/lo cells exhibiting strong inhibition of CD8+ T cell proliferation in vitro. However, adoptive transfer of these cells failed to alter antigen-specific CD8+ T cell proliferation and cytotoxicity in vivo. Furthermore, MDSC could not prevent the development of autoimmunity in a stringent model of type 1 diabetes. Rather, loading the cells prior to injection with a pancreatic neo-antigen peptide accelerated the development of the disease. Contrastingly, in a model of skin transplantation, repeated injection of MDSC or single injection of LPS-activated MDSC resulted in a significant prolongation of allograft survival. The beneficial effect of MDSC infusions on skin graft survival was paradoxically not explained by a decrease of donor-specific T cell response but associated with a systemic over-activation of T cells and antigen presenting cells, prominently in the spleen. Taken together, our results indicate that in vitro generated MDSC bear therapeutic potential but will require additional in vitro factors or adjunct immunosuppressive treatments to achieve safe and more robust immunomodulation upon adoptive transfer.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24927018</pmid><doi>10.1371/journal.pone.0100013</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-06, Vol.9 (6), p.e100013-e100013 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1978569604 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adoptive transfer Adoptive Transfer - methods Allografts Analysis Animal models Animals Antigen-presenting cells Antigens Autoimmune Diseases - pathology Autoimmune Diseases - therapy Autoimmunity B cells Biocompatibility Biology and Life Sciences Bone marrow Bone Marrow Cells - physiology Bone Marrow Transplantation CD11b antigen CD8 antigen Cell activation Cell culture Cell growth Cell proliferation Cell survival Cells, Cultured Cercopithecus aethiops COS Cells Cytokines Cytotoxicity Diabetes Diabetes mellitus Disease Models, Animal Female Flow cytometry Graft rejection Graft Rejection - immunology Graft Rejection - pathology Graft Rejection - therapy Granulocyte-macrophage colony-stimulating factor Health aspects Immunity Immunology Immunomodulation Immunoregulation Immunosuppression Inflammation Inflammatory bowel disease Injection Interleukin 6 Lipopolysaccharides Lymphocytes Lymphocytes T Male Medicine and Health Sciences Mice Mice, Inbred C57BL Mice, Transgenic Myeloid Cells - transplantation Pancreas Prolongation Research and Analysis Methods Skin grafts Spleen Suppressor cells Survival T cell receptors T cells Toxicity Transplantation Type 1 diabetes |
title | Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20therapeutic%20potential%20of%20bone%20marrow-derived%20myeloid%20suppressor%20cell%20(MDSC)%20adoptive%20transfer%20in%20mouse%20models%20of%20autoimmunity%20and%20allograft%20rejection&rft.jtitle=PloS%20one&rft.au=Drujont,%20Lucile&rft.date=2014-06-13&rft.volume=9&rft.issue=6&rft.spage=e100013&rft.epage=e100013&rft.pages=e100013-e100013&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0100013&rft_dat=%3Cgale_plos_%3EA418552476%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978569604&rft_id=info:pmid/24927018&rft_galeid=A418552476&rft_doaj_id=oai_doaj_org_article_e04f3d4f077447d2bb0cdd8a4cc015d0&rfr_iscdi=true |