Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China
Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in No...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-01, Vol.9 (1), p.e87187-e87187 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e87187 |
---|---|
container_issue | 1 |
container_start_page | e87187 |
container_title | PloS one |
container_volume | 9 |
creator | Liu, Chunping Tsuda, Yoshiaki Shen, Hailong Hu, Lijiang Saito, Yoko Ide, Yuji |
description | Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST = 0.073; G'ST = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study. |
doi_str_mv | 10.1371/journal.pone.0087187 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1977453761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478832144</galeid><doaj_id>oai_doaj_org_article_31b03539fec14e8b8bb6a2fa95382de9</doaj_id><sourcerecordid>A478832144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c795t-b86d801ed007bd7152cc24e99d796db15784ff5085930fa0de27b084e8ce120f3</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9EBQRTcNR8zk-RGWKrWQrFgtbchkzmzkzKbbPNR7b83292WjvRChjAhec57kjfnFMVLjOaYMvzxwiVv1ThfOwtzhDjDnD0q9rGgZNYQRB_fm-8Vz0K4QKimvGmeFnukqgRHVOwX8QgsRKPLEH3SMXkole3KwYBXXg9Gq7Fcu3UaVTTOlp25Ar8EqyEjITp_Xbq-XGjw5cpZV14pP9_OjC3PXIrDjdx35-MAKsTycDBWPS-e9GoM8GL3Pyh-ff3y8_Db7OT06PhwcTLTTNRx1vKm4whDhxBrO4ZrojWpQIiOiaZrcc141fc14rWgqFeoA8JaxCvgGjBBPT0oXm9116MLcmdYkFgwVtWUNTgTx1uic-pCrr1ZKX8tnTLyZsH5pVQ-2zOCpLhFtKaiB41zipa3baNIr0Q2lXQgstaHrVb4DevUTtQ-m_PFjVpKkhDE8Sb1p93hUruCToONXo2TqOmONYNcuitJBRL5JbPAu52Ad5cJQpQrEzSMo7LgUr5mJQQmOI-MvvkHfdiMHbVU-b7G9i7n1RtRuagY55TgqsrU_AEqfx2sjM7F2Ju8Pgl4PwnITIQ_calSCPL47Mf_s6fnU_btPTaX1xiH4Ma0KdQwBastqL0LwUN_ZzJGctNLt27ITS_JXS_lsFf3H-gu6LZ56F9z7xo8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977453761</pqid></control><display><type>article</type><title>Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Liu, Chunping ; Tsuda, Yoshiaki ; Shen, Hailong ; Hu, Lijiang ; Saito, Yoko ; Ide, Yuji</creator><creatorcontrib>Liu, Chunping ; Tsuda, Yoshiaki ; Shen, Hailong ; Hu, Lijiang ; Saito, Yoko ; Ide, Yuji</creatorcontrib><description>Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST = 0.073; G'ST = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0087187</identifier><identifier>PMID: 24498039</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acer - classification ; Acer - genetics ; Acer - growth & development ; Acer pictum mono ; Analysis ; Bayesian analysis ; Biological evolution ; Biology ; China ; Chinese history ; Cluster Analysis ; Conservation ; Conservation of Natural Resources - methods ; Demographics ; Demography ; Divergence ; Ecology ; Ecosystem biology ; Ecosystems ; Environmental management ; Evolution ; Evolutionary biology ; Evolutionary genetics ; Flowers & plants ; Forest management ; Forestry ; Forestry - methods ; Genetic diversity ; Genetic markers ; Genetic structure ; Genetic Variation ; Genetics, Population ; Genotype ; Geography ; Heterozygosity ; History ; Laboratories ; Last Glacial Maximum ; Latitude ; Life sciences ; Microsatellite Repeats - genetics ; Microsatellites ; Mitochondrial DNA ; Models, Genetic ; Natural populations ; Phylogeny ; Plant reproduction ; Pleistocene ; Population ; Population genetics ; Populations ; Protection and preservation ; Species ; Strategic planning (Business) ; Structural analysis ; Structural hierarchy ; Studies ; Sustainable forestry ; Trees ; Wildlife conservation</subject><ispartof>PloS one, 2014-01, Vol.9 (1), p.e87187-e87187</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Liu et al 2014 Liu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c795t-b86d801ed007bd7152cc24e99d796db15784ff5085930fa0de27b084e8ce120f3</citedby><cites>FETCH-LOGICAL-c795t-b86d801ed007bd7152cc24e99d796db15784ff5085930fa0de27b084e8ce120f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909053/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909053/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24498039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-220811$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chunping</creatorcontrib><creatorcontrib>Tsuda, Yoshiaki</creatorcontrib><creatorcontrib>Shen, Hailong</creatorcontrib><creatorcontrib>Hu, Lijiang</creatorcontrib><creatorcontrib>Saito, Yoko</creatorcontrib><creatorcontrib>Ide, Yuji</creatorcontrib><title>Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST = 0.073; G'ST = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.</description><subject>Acer - classification</subject><subject>Acer - genetics</subject><subject>Acer - growth & development</subject><subject>Acer pictum mono</subject><subject>Analysis</subject><subject>Bayesian analysis</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>China</subject><subject>Chinese history</subject><subject>Cluster Analysis</subject><subject>Conservation</subject><subject>Conservation of Natural Resources - methods</subject><subject>Demographics</subject><subject>Demography</subject><subject>Divergence</subject><subject>Ecology</subject><subject>Ecosystem biology</subject><subject>Ecosystems</subject><subject>Environmental management</subject><subject>Evolution</subject><subject>Evolutionary biology</subject><subject>Evolutionary genetics</subject><subject>Flowers & plants</subject><subject>Forest management</subject><subject>Forestry</subject><subject>Forestry - methods</subject><subject>Genetic diversity</subject><subject>Genetic markers</subject><subject>Genetic structure</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Genotype</subject><subject>Geography</subject><subject>Heterozygosity</subject><subject>History</subject><subject>Laboratories</subject><subject>Last Glacial Maximum</subject><subject>Latitude</subject><subject>Life sciences</subject><subject>Microsatellite Repeats - genetics</subject><subject>Microsatellites</subject><subject>Mitochondrial DNA</subject><subject>Models, Genetic</subject><subject>Natural populations</subject><subject>Phylogeny</subject><subject>Plant reproduction</subject><subject>Pleistocene</subject><subject>Population</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Protection and preservation</subject><subject>Species</subject><subject>Strategic planning (Business)</subject><subject>Structural analysis</subject><subject>Structural hierarchy</subject><subject>Studies</subject><subject>Sustainable forestry</subject><subject>Trees</subject><subject>Wildlife conservation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9EBQRTcNR8zk-RGWKrWQrFgtbchkzmzkzKbbPNR7b83292WjvRChjAhec57kjfnFMVLjOaYMvzxwiVv1ThfOwtzhDjDnD0q9rGgZNYQRB_fm-8Vz0K4QKimvGmeFnukqgRHVOwX8QgsRKPLEH3SMXkole3KwYBXXg9Gq7Fcu3UaVTTOlp25Ar8EqyEjITp_Xbq-XGjw5cpZV14pP9_OjC3PXIrDjdx35-MAKsTycDBWPS-e9GoM8GL3Pyh-ff3y8_Db7OT06PhwcTLTTNRx1vKm4whDhxBrO4ZrojWpQIiOiaZrcc141fc14rWgqFeoA8JaxCvgGjBBPT0oXm9116MLcmdYkFgwVtWUNTgTx1uic-pCrr1ZKX8tnTLyZsH5pVQ-2zOCpLhFtKaiB41zipa3baNIr0Q2lXQgstaHrVb4DevUTtQ-m_PFjVpKkhDE8Sb1p93hUruCToONXo2TqOmONYNcuitJBRL5JbPAu52Ad5cJQpQrEzSMo7LgUr5mJQQmOI-MvvkHfdiMHbVU-b7G9i7n1RtRuagY55TgqsrU_AEqfx2sjM7F2Ju8Pgl4PwnITIQ_calSCPL47Mf_s6fnU_btPTaX1xiH4Ma0KdQwBastqL0LwUN_ZzJGctNLt27ITS_JXS_lsFf3H-gu6LZ56F9z7xo8</recordid><startdate>20140131</startdate><enddate>20140131</enddate><creator>Liu, Chunping</creator><creator>Tsuda, Yoshiaki</creator><creator>Shen, Hailong</creator><creator>Hu, Lijiang</creator><creator>Saito, Yoko</creator><creator>Ide, Yuji</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20140131</creationdate><title>Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China</title><author>Liu, Chunping ; Tsuda, Yoshiaki ; Shen, Hailong ; Hu, Lijiang ; Saito, Yoko ; Ide, Yuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c795t-b86d801ed007bd7152cc24e99d796db15784ff5085930fa0de27b084e8ce120f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acer - classification</topic><topic>Acer - genetics</topic><topic>Acer - growth & development</topic><topic>Acer pictum mono</topic><topic>Analysis</topic><topic>Bayesian analysis</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>China</topic><topic>Chinese history</topic><topic>Cluster Analysis</topic><topic>Conservation</topic><topic>Conservation of Natural Resources - methods</topic><topic>Demographics</topic><topic>Demography</topic><topic>Divergence</topic><topic>Ecology</topic><topic>Ecosystem biology</topic><topic>Ecosystems</topic><topic>Environmental management</topic><topic>Evolution</topic><topic>Evolutionary biology</topic><topic>Evolutionary genetics</topic><topic>Flowers & plants</topic><topic>Forest management</topic><topic>Forestry</topic><topic>Forestry - methods</topic><topic>Genetic diversity</topic><topic>Genetic markers</topic><topic>Genetic structure</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Genotype</topic><topic>Geography</topic><topic>Heterozygosity</topic><topic>History</topic><topic>Laboratories</topic><topic>Last Glacial Maximum</topic><topic>Latitude</topic><topic>Life sciences</topic><topic>Microsatellite Repeats - genetics</topic><topic>Microsatellites</topic><topic>Mitochondrial DNA</topic><topic>Models, Genetic</topic><topic>Natural populations</topic><topic>Phylogeny</topic><topic>Plant reproduction</topic><topic>Pleistocene</topic><topic>Population</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Protection and preservation</topic><topic>Species</topic><topic>Strategic planning (Business)</topic><topic>Structural analysis</topic><topic>Structural hierarchy</topic><topic>Studies</topic><topic>Sustainable forestry</topic><topic>Trees</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chunping</creatorcontrib><creatorcontrib>Tsuda, Yoshiaki</creatorcontrib><creatorcontrib>Shen, Hailong</creatorcontrib><creatorcontrib>Hu, Lijiang</creatorcontrib><creatorcontrib>Saito, Yoko</creatorcontrib><creatorcontrib>Ide, Yuji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chunping</au><au>Tsuda, Yoshiaki</au><au>Shen, Hailong</au><au>Hu, Lijiang</au><au>Saito, Yoko</au><au>Ide, Yuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-01-31</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>e87187</spage><epage>e87187</epage><pages>e87187-e87187</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST = 0.073; G'ST = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24498039</pmid><doi>10.1371/journal.pone.0087187</doi><tpages>e87187</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-01, Vol.9 (1), p.e87187-e87187 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1977453761 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Acer - classification Acer - genetics Acer - growth & development Acer pictum mono Analysis Bayesian analysis Biological evolution Biology China Chinese history Cluster Analysis Conservation Conservation of Natural Resources - methods Demographics Demography Divergence Ecology Ecosystem biology Ecosystems Environmental management Evolution Evolutionary biology Evolutionary genetics Flowers & plants Forest management Forestry Forestry - methods Genetic diversity Genetic markers Genetic structure Genetic Variation Genetics, Population Genotype Geography Heterozygosity History Laboratories Last Glacial Maximum Latitude Life sciences Microsatellite Repeats - genetics Microsatellites Mitochondrial DNA Models, Genetic Natural populations Phylogeny Plant reproduction Pleistocene Population Population genetics Populations Protection and preservation Species Strategic planning (Business) Structural analysis Structural hierarchy Studies Sustainable forestry Trees Wildlife conservation |
title | Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20structure%20and%20hierarchical%20population%20divergence%20history%20of%20Acer%20mono%20var.%20mono%20in%20South%20and%20Northeast%20China&rft.jtitle=PloS%20one&rft.au=Liu,%20Chunping&rft.date=2014-01-31&rft.volume=9&rft.issue=1&rft.spage=e87187&rft.epage=e87187&rft.pages=e87187-e87187&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0087187&rft_dat=%3Cgale_plos_%3EA478832144%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977453761&rft_id=info:pmid/24498039&rft_galeid=A478832144&rft_doaj_id=oai_doaj_org_article_31b03539fec14e8b8bb6a2fa95382de9&rfr_iscdi=true |