Correlation models between environmental factors and bacterial resistance to antimony and copper
Antimony (Sb) and copper (Cu) are toxic heavy metals that are associated with a wide variety of minerals. Sb(III)-oxidizing bacteria that convert the toxic Sb(III) to the less toxic Sb(V) are potentially useful for environmental Sb bioremediation. A total of 125 culturable Sb(III)/Cu(II)-resistant b...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-10, Vol.8 (10), p.e78533 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e78533 |
container_title | PloS one |
container_volume | 8 |
creator | Shi, Zunji Cao, Zhan Qin, Dong Zhu, Wentao Wang, Qian Li, Mingshun Wang, Gejiao |
description | Antimony (Sb) and copper (Cu) are toxic heavy metals that are associated with a wide variety of minerals. Sb(III)-oxidizing bacteria that convert the toxic Sb(III) to the less toxic Sb(V) are potentially useful for environmental Sb bioremediation. A total of 125 culturable Sb(III)/Cu(II)-resistant bacteria from 11 different types of mining soils were isolated. Four strains identified as Arthrobacter, Acinetobacter and Janibacter exhibited notably high minimum inhibitory concentrations (MICs) for Sb(III) (>10 mM),making them the most highly Sb(III)-resistant bacteria to date. Thirty-six strains were able to oxidize Sb(III), including Pseudomonas-, Comamonas-, Acinetobacter-, Sphingopyxis-, Paracoccus- Aminobacter-, Arthrobacter-, Bacillus-, Janibacter- and Variovorax-like isolates. Canonical correspondence analysis (CCA) revealed that the soil concentrations of Sb and Cu were the most obvious environmental factors affecting the culturable bacterial population structures. Stepwise linear regression was used to create two predictive models for the correlation between soil characteristics and the bacterial Sb(III) or Cu(II) resistance. The concentrations of Sb and Cu in the soil was the significant factors affecting the bacterial Sb(III) resistance, whereas the concentrations of S and P in the soil greatly affected the bacterial Cu(II) resistance. The two stepwise linear regression models that we derived are as follows: MIC(Sb(III))=606.605+0.14533 x C(Sb)+0.4128 x C(Cu) and MIC((Cu)(II))=58.3844+0.02119 x C(S)+0.00199 x CP [where the MIC(Sb(III)) and MIC(Cu(II)) represent the average bacterial MIC for the metal of each soil (μM), and the C(Sb), C(Cu), C(S) and C(P) represent concentrations for Sb, Cu, S and P (mg/kg) in soil, respectively, p |
doi_str_mv | 10.1371/journal.pone.0078533 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1975711945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_42c6f15c40124baca74366f031e0c591</doaj_id><sourcerecordid>1975711945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-3daa441e88bdcd9e4161ae7f8a1f7b35176f145b0445d802d1ba762e8e637ff73</originalsourceid><addsrcrecordid>eNp1Uk1P3DAQjVAroLT_oGojcd6txx9xcqlUrUqLhNRLORvHHtOsEju1vSD-fc1uQHDoyaOZN--9GU9VfQSyBibhyzbsotfjeg4e14TIVjB2VJ1Cx-iqoYS9eRGfVO9S2hIiWNs0x9UJ5ZQIKuhpdbMJMeKo8xB8PQWLY6p7zPeIvkZ_N8TgJ_RZj7XTJoeYau1t3ZcY41CyEdOQsvYG6xxKLQ9T8A97kAnzjPF99dbpMeGH5T2rri--_978XF39-nG5-Xa1MqKjecWs1pwDtm1vje2QQwMapWs1ONkzAbJxwEVPOBe2JdRCr2VDscWGSeckO6s-H3jnMSS1LCcp6KSQAB0XBXF5QNigt2qOw6Tjgwp6UPtEiLdKxzyYERWnpsgJwwlQXobVkrOmcYQBkuIXCtfXRW3XT2hNWVHU4yvS1xU__FG34U6xFijszZwvBDH83WHK_7HMDygTQ0oR3bMCEPV4BU9d6vEK1HIFpe3TS3fPTU_fzv4BjUCyUw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975711945</pqid></control><display><type>article</type><title>Correlation models between environmental factors and bacterial resistance to antimony and copper</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shi, Zunji ; Cao, Zhan ; Qin, Dong ; Zhu, Wentao ; Wang, Qian ; Li, Mingshun ; Wang, Gejiao</creator><contributor>Janssen, Paul Jaak</contributor><creatorcontrib>Shi, Zunji ; Cao, Zhan ; Qin, Dong ; Zhu, Wentao ; Wang, Qian ; Li, Mingshun ; Wang, Gejiao ; Janssen, Paul Jaak</creatorcontrib><description>Antimony (Sb) and copper (Cu) are toxic heavy metals that are associated with a wide variety of minerals. Sb(III)-oxidizing bacteria that convert the toxic Sb(III) to the less toxic Sb(V) are potentially useful for environmental Sb bioremediation. A total of 125 culturable Sb(III)/Cu(II)-resistant bacteria from 11 different types of mining soils were isolated. Four strains identified as Arthrobacter, Acinetobacter and Janibacter exhibited notably high minimum inhibitory concentrations (MICs) for Sb(III) (>10 mM),making them the most highly Sb(III)-resistant bacteria to date. Thirty-six strains were able to oxidize Sb(III), including Pseudomonas-, Comamonas-, Acinetobacter-, Sphingopyxis-, Paracoccus- Aminobacter-, Arthrobacter-, Bacillus-, Janibacter- and Variovorax-like isolates. Canonical correspondence analysis (CCA) revealed that the soil concentrations of Sb and Cu were the most obvious environmental factors affecting the culturable bacterial population structures. Stepwise linear regression was used to create two predictive models for the correlation between soil characteristics and the bacterial Sb(III) or Cu(II) resistance. The concentrations of Sb and Cu in the soil was the significant factors affecting the bacterial Sb(III) resistance, whereas the concentrations of S and P in the soil greatly affected the bacterial Cu(II) resistance. The two stepwise linear regression models that we derived are as follows: MIC(Sb(III))=606.605+0.14533 x C(Sb)+0.4128 x C(Cu) and MIC((Cu)(II))=58.3844+0.02119 x C(S)+0.00199 x CP [where the MIC(Sb(III)) and MIC(Cu(II)) represent the average bacterial MIC for the metal of each soil (μM), and the C(Sb), C(Cu), C(S) and C(P) represent concentrations for Sb, Cu, S and P (mg/kg) in soil, respectively, p<0.01]. The stepwise linear regression models we developed suggest that metals as well as other soil physicochemical parameters can contribute to bacterial resistance to metals.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0078533</identifier><identifier>PMID: 24205252</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acinetobacter ; Agrobacterium tumefaciens ; Antimony ; Antimony - toxicity ; Arsenic ; Arthrobacter ; Bacillus ; Bacteria ; Bacteria - drug effects ; Bacteria - growth & development ; Bacteria - isolation & purification ; Bacteria - metabolism ; Biodegradation, Environmental ; Biodiversity ; Bioremediation ; Copper ; Copper - toxicity ; Correlation ; Environment ; Environment models ; Environmental factors ; Environmental Pollutants - toxicity ; Genes ; Heavy metals ; Laboratories ; Metals ; Microbiology ; Microorganisms ; Minerals ; Minimum inhibitory concentration ; Mining ; Models, Theoretical ; Oxidation ; Oxidation-Reduction ; Prediction models ; Pseudomonas ; Regression analysis ; Regression models ; Resistance factors ; Soil characteristics ; Soil contamination ; Soil Microbiology ; Soil microorganisms ; Soils ; Strains (organisms) ; Variables</subject><ispartof>PloS one, 2013-10, Vol.8 (10), p.e78533</ispartof><rights>2013 Shi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Shi et al 2013 Shi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-3daa441e88bdcd9e4161ae7f8a1f7b35176f145b0445d802d1ba762e8e637ff73</citedby><cites>FETCH-LOGICAL-c592t-3daa441e88bdcd9e4161ae7f8a1f7b35176f145b0445d802d1ba762e8e637ff73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812145/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812145/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24205252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Janssen, Paul Jaak</contributor><creatorcontrib>Shi, Zunji</creatorcontrib><creatorcontrib>Cao, Zhan</creatorcontrib><creatorcontrib>Qin, Dong</creatorcontrib><creatorcontrib>Zhu, Wentao</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Li, Mingshun</creatorcontrib><creatorcontrib>Wang, Gejiao</creatorcontrib><title>Correlation models between environmental factors and bacterial resistance to antimony and copper</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Antimony (Sb) and copper (Cu) are toxic heavy metals that are associated with a wide variety of minerals. Sb(III)-oxidizing bacteria that convert the toxic Sb(III) to the less toxic Sb(V) are potentially useful for environmental Sb bioremediation. A total of 125 culturable Sb(III)/Cu(II)-resistant bacteria from 11 different types of mining soils were isolated. Four strains identified as Arthrobacter, Acinetobacter and Janibacter exhibited notably high minimum inhibitory concentrations (MICs) for Sb(III) (>10 mM),making them the most highly Sb(III)-resistant bacteria to date. Thirty-six strains were able to oxidize Sb(III), including Pseudomonas-, Comamonas-, Acinetobacter-, Sphingopyxis-, Paracoccus- Aminobacter-, Arthrobacter-, Bacillus-, Janibacter- and Variovorax-like isolates. Canonical correspondence analysis (CCA) revealed that the soil concentrations of Sb and Cu were the most obvious environmental factors affecting the culturable bacterial population structures. Stepwise linear regression was used to create two predictive models for the correlation between soil characteristics and the bacterial Sb(III) or Cu(II) resistance. The concentrations of Sb and Cu in the soil was the significant factors affecting the bacterial Sb(III) resistance, whereas the concentrations of S and P in the soil greatly affected the bacterial Cu(II) resistance. The two stepwise linear regression models that we derived are as follows: MIC(Sb(III))=606.605+0.14533 x C(Sb)+0.4128 x C(Cu) and MIC((Cu)(II))=58.3844+0.02119 x C(S)+0.00199 x CP [where the MIC(Sb(III)) and MIC(Cu(II)) represent the average bacterial MIC for the metal of each soil (μM), and the C(Sb), C(Cu), C(S) and C(P) represent concentrations for Sb, Cu, S and P (mg/kg) in soil, respectively, p<0.01]. The stepwise linear regression models we developed suggest that metals as well as other soil physicochemical parameters can contribute to bacterial resistance to metals.</description><subject>Acinetobacter</subject><subject>Agrobacterium tumefaciens</subject><subject>Antimony</subject><subject>Antimony - toxicity</subject><subject>Arsenic</subject><subject>Arthrobacter</subject><subject>Bacillus</subject><subject>Bacteria</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - growth & development</subject><subject>Bacteria - isolation & purification</subject><subject>Bacteria - metabolism</subject><subject>Biodegradation, Environmental</subject><subject>Biodiversity</subject><subject>Bioremediation</subject><subject>Copper</subject><subject>Copper - toxicity</subject><subject>Correlation</subject><subject>Environment</subject><subject>Environment models</subject><subject>Environmental factors</subject><subject>Environmental Pollutants - toxicity</subject><subject>Genes</subject><subject>Heavy metals</subject><subject>Laboratories</subject><subject>Metals</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Minerals</subject><subject>Minimum inhibitory concentration</subject><subject>Mining</subject><subject>Models, Theoretical</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Prediction models</subject><subject>Pseudomonas</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Resistance factors</subject><subject>Soil characteristics</subject><subject>Soil contamination</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soils</subject><subject>Strains (organisms)</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1Uk1P3DAQjVAroLT_oGojcd6txx9xcqlUrUqLhNRLORvHHtOsEju1vSD-fc1uQHDoyaOZN--9GU9VfQSyBibhyzbsotfjeg4e14TIVjB2VJ1Cx-iqoYS9eRGfVO9S2hIiWNs0x9UJ5ZQIKuhpdbMJMeKo8xB8PQWLY6p7zPeIvkZ_N8TgJ_RZj7XTJoeYau1t3ZcY41CyEdOQsvYG6xxKLQ9T8A97kAnzjPF99dbpMeGH5T2rri--_978XF39-nG5-Xa1MqKjecWs1pwDtm1vje2QQwMapWs1ONkzAbJxwEVPOBe2JdRCr2VDscWGSeckO6s-H3jnMSS1LCcp6KSQAB0XBXF5QNigt2qOw6Tjgwp6UPtEiLdKxzyYERWnpsgJwwlQXobVkrOmcYQBkuIXCtfXRW3XT2hNWVHU4yvS1xU__FG34U6xFijszZwvBDH83WHK_7HMDygTQ0oR3bMCEPV4BU9d6vEK1HIFpe3TS3fPTU_fzv4BjUCyUw</recordid><startdate>20131029</startdate><enddate>20131029</enddate><creator>Shi, Zunji</creator><creator>Cao, Zhan</creator><creator>Qin, Dong</creator><creator>Zhu, Wentao</creator><creator>Wang, Qian</creator><creator>Li, Mingshun</creator><creator>Wang, Gejiao</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131029</creationdate><title>Correlation models between environmental factors and bacterial resistance to antimony and copper</title><author>Shi, Zunji ; Cao, Zhan ; Qin, Dong ; Zhu, Wentao ; Wang, Qian ; Li, Mingshun ; Wang, Gejiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-3daa441e88bdcd9e4161ae7f8a1f7b35176f145b0445d802d1ba762e8e637ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acinetobacter</topic><topic>Agrobacterium tumefaciens</topic><topic>Antimony</topic><topic>Antimony - toxicity</topic><topic>Arsenic</topic><topic>Arthrobacter</topic><topic>Bacillus</topic><topic>Bacteria</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - growth & development</topic><topic>Bacteria - isolation & purification</topic><topic>Bacteria - metabolism</topic><topic>Biodegradation, Environmental</topic><topic>Biodiversity</topic><topic>Bioremediation</topic><topic>Copper</topic><topic>Copper - toxicity</topic><topic>Correlation</topic><topic>Environment</topic><topic>Environment models</topic><topic>Environmental factors</topic><topic>Environmental Pollutants - toxicity</topic><topic>Genes</topic><topic>Heavy metals</topic><topic>Laboratories</topic><topic>Metals</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Minerals</topic><topic>Minimum inhibitory concentration</topic><topic>Mining</topic><topic>Models, Theoretical</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Prediction models</topic><topic>Pseudomonas</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Resistance factors</topic><topic>Soil characteristics</topic><topic>Soil contamination</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soils</topic><topic>Strains (organisms)</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zunji</creatorcontrib><creatorcontrib>Cao, Zhan</creatorcontrib><creatorcontrib>Qin, Dong</creatorcontrib><creatorcontrib>Zhu, Wentao</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Li, Mingshun</creatorcontrib><creatorcontrib>Wang, Gejiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zunji</au><au>Cao, Zhan</au><au>Qin, Dong</au><au>Zhu, Wentao</au><au>Wang, Qian</au><au>Li, Mingshun</au><au>Wang, Gejiao</au><au>Janssen, Paul Jaak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation models between environmental factors and bacterial resistance to antimony and copper</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-10-29</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>e78533</spage><pages>e78533-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Antimony (Sb) and copper (Cu) are toxic heavy metals that are associated with a wide variety of minerals. Sb(III)-oxidizing bacteria that convert the toxic Sb(III) to the less toxic Sb(V) are potentially useful for environmental Sb bioremediation. A total of 125 culturable Sb(III)/Cu(II)-resistant bacteria from 11 different types of mining soils were isolated. Four strains identified as Arthrobacter, Acinetobacter and Janibacter exhibited notably high minimum inhibitory concentrations (MICs) for Sb(III) (>10 mM),making them the most highly Sb(III)-resistant bacteria to date. Thirty-six strains were able to oxidize Sb(III), including Pseudomonas-, Comamonas-, Acinetobacter-, Sphingopyxis-, Paracoccus- Aminobacter-, Arthrobacter-, Bacillus-, Janibacter- and Variovorax-like isolates. Canonical correspondence analysis (CCA) revealed that the soil concentrations of Sb and Cu were the most obvious environmental factors affecting the culturable bacterial population structures. Stepwise linear regression was used to create two predictive models for the correlation between soil characteristics and the bacterial Sb(III) or Cu(II) resistance. The concentrations of Sb and Cu in the soil was the significant factors affecting the bacterial Sb(III) resistance, whereas the concentrations of S and P in the soil greatly affected the bacterial Cu(II) resistance. The two stepwise linear regression models that we derived are as follows: MIC(Sb(III))=606.605+0.14533 x C(Sb)+0.4128 x C(Cu) and MIC((Cu)(II))=58.3844+0.02119 x C(S)+0.00199 x CP [where the MIC(Sb(III)) and MIC(Cu(II)) represent the average bacterial MIC for the metal of each soil (μM), and the C(Sb), C(Cu), C(S) and C(P) represent concentrations for Sb, Cu, S and P (mg/kg) in soil, respectively, p<0.01]. The stepwise linear regression models we developed suggest that metals as well as other soil physicochemical parameters can contribute to bacterial resistance to metals.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24205252</pmid><doi>10.1371/journal.pone.0078533</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-10, Vol.8 (10), p.e78533 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1975711945 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acinetobacter Agrobacterium tumefaciens Antimony Antimony - toxicity Arsenic Arthrobacter Bacillus Bacteria Bacteria - drug effects Bacteria - growth & development Bacteria - isolation & purification Bacteria - metabolism Biodegradation, Environmental Biodiversity Bioremediation Copper Copper - toxicity Correlation Environment Environment models Environmental factors Environmental Pollutants - toxicity Genes Heavy metals Laboratories Metals Microbiology Microorganisms Minerals Minimum inhibitory concentration Mining Models, Theoretical Oxidation Oxidation-Reduction Prediction models Pseudomonas Regression analysis Regression models Resistance factors Soil characteristics Soil contamination Soil Microbiology Soil microorganisms Soils Strains (organisms) Variables |
title | Correlation models between environmental factors and bacterial resistance to antimony and copper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20models%20between%20environmental%20factors%20and%20bacterial%20resistance%20to%20antimony%20and%20copper&rft.jtitle=PloS%20one&rft.au=Shi,%20Zunji&rft.date=2013-10-29&rft.volume=8&rft.issue=10&rft.spage=e78533&rft.pages=e78533-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0078533&rft_dat=%3Cproquest_plos_%3E1975711945%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975711945&rft_id=info:pmid/24205252&rft_doaj_id=oai_doaj_org_article_42c6f15c40124baca74366f031e0c591&rfr_iscdi=true |