Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma
We present tournament results and several powerful strategies for the Iterated Prisoner's Dilemma created using reinforcement learning techniques (evolutionary and particle swarm algorithms). These strategies are trained to perform well against a corpus of over 170 distinct opponents, including...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-12, Vol.12 (12), p.e0188046-e0188046 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0188046 |
---|---|
container_issue | 12 |
container_start_page | e0188046 |
container_title | PloS one |
container_volume | 12 |
creator | Harper, Marc Knight, Vincent Jones, Martin Koutsovoulos, Georgios Glynatsi, Nikoleta E Campbell, Owen |
description | We present tournament results and several powerful strategies for the Iterated Prisoner's Dilemma created using reinforcement learning techniques (evolutionary and particle swarm algorithms). These strategies are trained to perform well against a corpus of over 170 distinct opponents, including many well-known and classic strategies. All the trained strategies win standard tournaments against the total collection of other opponents. The trained strategies and one particular human made designed strategy are the top performers in noisy tournaments also. |
doi_str_mv | 10.1371/journal.pone.0188046 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1975587064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A518390711</galeid><doaj_id>oai_doaj_org_article_5ead0c0800d84190a55c9b3e56ae8fb7</doaj_id><sourcerecordid>A518390711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-f2008e648308f23ca723522523a84cbdacf9187a6c2dc91d80db88271658b8093</originalsourceid><addsrcrecordid>eNqNk01r3DAQhk1padK0_6C0hkDbHHYryZYsXwpL-pGFhZT06yhkaezVYltbSQ7tv6-cdcJuyKHoIDF65h3pHSZJXmI0x1mB32_s4HrZzre2hznCnKOcPUqOcZmRGSMoe7x3Pkqeeb9BiGacsafJESkJ4Qjh4-TXFZi-tk5BB31IW5CuN32Tbp3VgwKfatuZXsYrH5wM0JgYi3wa1pAuA4wxnX51xsdnuLc-_Wha6Dr5PHlSy9bDi2k_SX58_vT9_GK2uvyyPF-sZqogLMxqghAHlvMM8ZpkShYko4RQkkmeq0pLVZeYF5IpolWJNUe64pwUmFFecVRmJ8nrne62tV5MnniBy4JSXiCWR2K5I7SVG7F1ppPur7DSiJuAdY2QLhjVgqAgNVIoOqN5jkskKVVllQFlEnhdFVHrw1RtqDrQKlrmZHsgenjTm7Vo7LWgBck5I1HgbCewvpd2sViJMYYII5SW5BpH9t1UzNnfA_ggOuMVtK3swQ43f2QIEURoRE_voQ87MVGNjJ8d2x7fqEZRsaCYZyUq8Fh2_gAVl4bOqNjlOnb4MOHsICEyAf6ERg7ei-W3q_9nL38esm_22DXINqy9bYdgbO8PwXwHKme9d1DfOYuRGGfl1g0xzoqYZiWmvdpv5l3S7XBk_wBkDQ0R</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975587064</pqid></control><display><type>article</type><title>Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Harper, Marc ; Knight, Vincent ; Jones, Martin ; Koutsovoulos, Georgios ; Glynatsi, Nikoleta E ; Campbell, Owen</creator><contributor>Deng, Yong</contributor><creatorcontrib>Harper, Marc ; Knight, Vincent ; Jones, Martin ; Koutsovoulos, Georgios ; Glynatsi, Nikoleta E ; Campbell, Owen ; Deng, Yong</creatorcontrib><description>We present tournament results and several powerful strategies for the Iterated Prisoner's Dilemma created using reinforcement learning techniques (evolutionary and particle swarm algorithms). These strategies are trained to perform well against a corpus of over 170 distinct opponents, including many well-known and classic strategies. All the trained strategies win standard tournaments against the total collection of other opponents. The trained strategies and one particular human made designed strategy are the top performers in noisy tournaments also.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0188046</identifier><identifier>PMID: 29228001</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Computer and Information Sciences ; Cooperation ; Environmental Sciences ; Evolution ; Evolutionary algorithms ; Game Theory ; Humans ; Learning ; Library collections ; Life Sciences ; Machine learning ; Physical Sciences ; Prisoner Dilemma ; Reinforcement ; Reinforcement learning (Machine learning) ; Research and Analysis Methods ; Researchers ; Tournaments & championships</subject><ispartof>PloS one, 2017-12, Vol.12 (12), p.e0188046-e0188046</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Harper et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2017 Harper et al 2017 Harper et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-f2008e648308f23ca723522523a84cbdacf9187a6c2dc91d80db88271658b8093</citedby><cites>FETCH-LOGICAL-c726t-f2008e648308f23ca723522523a84cbdacf9187a6c2dc91d80db88271658b8093</cites><orcidid>0000-0002-4245-0638 ; 0000-0003-0994-5652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724862/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724862/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29228001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02625592$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Deng, Yong</contributor><creatorcontrib>Harper, Marc</creatorcontrib><creatorcontrib>Knight, Vincent</creatorcontrib><creatorcontrib>Jones, Martin</creatorcontrib><creatorcontrib>Koutsovoulos, Georgios</creatorcontrib><creatorcontrib>Glynatsi, Nikoleta E</creatorcontrib><creatorcontrib>Campbell, Owen</creatorcontrib><title>Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We present tournament results and several powerful strategies for the Iterated Prisoner's Dilemma created using reinforcement learning techniques (evolutionary and particle swarm algorithms). These strategies are trained to perform well against a corpus of over 170 distinct opponents, including many well-known and classic strategies. All the trained strategies win standard tournaments against the total collection of other opponents. The trained strategies and one particular human made designed strategy are the top performers in noisy tournaments also.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Cooperation</subject><subject>Environmental Sciences</subject><subject>Evolution</subject><subject>Evolutionary algorithms</subject><subject>Game Theory</subject><subject>Humans</subject><subject>Learning</subject><subject>Library collections</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Physical Sciences</subject><subject>Prisoner Dilemma</subject><subject>Reinforcement</subject><subject>Reinforcement learning (Machine learning)</subject><subject>Research and Analysis Methods</subject><subject>Researchers</subject><subject>Tournaments & championships</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01r3DAQhk1padK0_6C0hkDbHHYryZYsXwpL-pGFhZT06yhkaezVYltbSQ7tv6-cdcJuyKHoIDF65h3pHSZJXmI0x1mB32_s4HrZzre2hznCnKOcPUqOcZmRGSMoe7x3Pkqeeb9BiGacsafJESkJ4Qjh4-TXFZi-tk5BB31IW5CuN32Tbp3VgwKfatuZXsYrH5wM0JgYi3wa1pAuA4wxnX51xsdnuLc-_Wha6Dr5PHlSy9bDi2k_SX58_vT9_GK2uvyyPF-sZqogLMxqghAHlvMM8ZpkShYko4RQkkmeq0pLVZeYF5IpolWJNUe64pwUmFFecVRmJ8nrne62tV5MnniBy4JSXiCWR2K5I7SVG7F1ppPur7DSiJuAdY2QLhjVgqAgNVIoOqN5jkskKVVllQFlEnhdFVHrw1RtqDrQKlrmZHsgenjTm7Vo7LWgBck5I1HgbCewvpd2sViJMYYII5SW5BpH9t1UzNnfA_ggOuMVtK3swQ43f2QIEURoRE_voQ87MVGNjJ8d2x7fqEZRsaCYZyUq8Fh2_gAVl4bOqNjlOnb4MOHsICEyAf6ERg7ei-W3q_9nL38esm_22DXINqy9bYdgbO8PwXwHKme9d1DfOYuRGGfl1g0xzoqYZiWmvdpv5l3S7XBk_wBkDQ0R</recordid><startdate>20171211</startdate><enddate>20171211</enddate><creator>Harper, Marc</creator><creator>Knight, Vincent</creator><creator>Jones, Martin</creator><creator>Koutsovoulos, Georgios</creator><creator>Glynatsi, Nikoleta E</creator><creator>Campbell, Owen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4245-0638</orcidid><orcidid>https://orcid.org/0000-0003-0994-5652</orcidid></search><sort><creationdate>20171211</creationdate><title>Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma</title><author>Harper, Marc ; Knight, Vincent ; Jones, Martin ; Koutsovoulos, Georgios ; Glynatsi, Nikoleta E ; Campbell, Owen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-f2008e648308f23ca723522523a84cbdacf9187a6c2dc91d80db88271658b8093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Cooperation</topic><topic>Environmental Sciences</topic><topic>Evolution</topic><topic>Evolutionary algorithms</topic><topic>Game Theory</topic><topic>Humans</topic><topic>Learning</topic><topic>Library collections</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Physical Sciences</topic><topic>Prisoner Dilemma</topic><topic>Reinforcement</topic><topic>Reinforcement learning (Machine learning)</topic><topic>Research and Analysis Methods</topic><topic>Researchers</topic><topic>Tournaments & championships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harper, Marc</creatorcontrib><creatorcontrib>Knight, Vincent</creatorcontrib><creatorcontrib>Jones, Martin</creatorcontrib><creatorcontrib>Koutsovoulos, Georgios</creatorcontrib><creatorcontrib>Glynatsi, Nikoleta E</creatorcontrib><creatorcontrib>Campbell, Owen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harper, Marc</au><au>Knight, Vincent</au><au>Jones, Martin</au><au>Koutsovoulos, Georgios</au><au>Glynatsi, Nikoleta E</au><au>Campbell, Owen</au><au>Deng, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-12-11</date><risdate>2017</risdate><volume>12</volume><issue>12</issue><spage>e0188046</spage><epage>e0188046</epage><pages>e0188046-e0188046</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We present tournament results and several powerful strategies for the Iterated Prisoner's Dilemma created using reinforcement learning techniques (evolutionary and particle swarm algorithms). These strategies are trained to perform well against a corpus of over 170 distinct opponents, including many well-known and classic strategies. All the trained strategies win standard tournaments against the total collection of other opponents. The trained strategies and one particular human made designed strategy are the top performers in noisy tournaments also.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29228001</pmid><doi>10.1371/journal.pone.0188046</doi><tpages>e0188046</tpages><orcidid>https://orcid.org/0000-0002-4245-0638</orcidid><orcidid>https://orcid.org/0000-0003-0994-5652</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-12, Vol.12 (12), p.e0188046-e0188046 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1975587064 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Biology and Life Sciences Computer and Information Sciences Cooperation Environmental Sciences Evolution Evolutionary algorithms Game Theory Humans Learning Library collections Life Sciences Machine learning Physical Sciences Prisoner Dilemma Reinforcement Reinforcement learning (Machine learning) Research and Analysis Methods Researchers Tournaments & championships |
title | Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20learning%20produces%20dominant%20strategies%20for%20the%20Iterated%20Prisoner's%20Dilemma&rft.jtitle=PloS%20one&rft.au=Harper,%20Marc&rft.date=2017-12-11&rft.volume=12&rft.issue=12&rft.spage=e0188046&rft.epage=e0188046&rft.pages=e0188046-e0188046&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0188046&rft_dat=%3Cgale_plos_%3EA518390711%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975587064&rft_id=info:pmid/29228001&rft_galeid=A518390711&rft_doaj_id=oai_doaj_org_article_5ead0c0800d84190a55c9b3e56ae8fb7&rfr_iscdi=true |