Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry
The widely used interaction of the homotetramer streptavidin with the small molecule biotin has been intensively studied by force spectroscopy and has become a model system for receptor ligand interaction. However, streptavidin's tetravalency results in diverse force propagation pathways throug...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-12, Vol.12 (12), p.e0188722-e0188722 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0188722 |
---|---|
container_issue | 12 |
container_start_page | e0188722 |
container_title | PloS one |
container_volume | 12 |
creator | Sedlak, Steffen M Bauer, Magnus S Kluger, Carleen Schendel, Leonard C Milles, Lukas F Pippig, Diana A Gaub, Hermann E |
description | The widely used interaction of the homotetramer streptavidin with the small molecule biotin has been intensively studied by force spectroscopy and has become a model system for receptor ligand interaction. However, streptavidin's tetravalency results in diverse force propagation pathways through the different binding interfaces. This multiplicity gives rise to polydisperse force spectroscopy data. Here, we present an engineered monovalent streptavidin tetramer with a single cysteine in its functional subunit that allows for site-specific immobilization of the molecule, orthogonal to biotin binding. Functionality of streptavidin and its binding properties for biotin remain unaffected. We thus created a stable and reliable molecular anchor with a unique high-affinity binding site for biotinylated molecules or nanoparticles, which we expect to be useful for many single-molecule applications. To characterize the mechanical properties of the bond between biotin and our monovalent streptavidin, we performed force spectroscopy experiments using an atomic force microscope. We were able to conduct measurements at the single-molecule level with 1:1-stoichiometry and a well-defined geometry, in which force exclusively propagates through a single subunit of the streptavidin tetramer. For different force loading rates, we obtained narrow force distributions of the bond rupture forces ranging from 200 pN at 1,500 pN/s to 230 pN at 110,000 pN/s. The data are in very good agreement with the standard Bell-Evans model with a single potential barrier at Δx0 = 0.38 nm and a zero-force off-rate koff,0 in the 10-6 s-1 range. |
doi_str_mv | 10.1371/journal.pone.0188722 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1973027437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A517544004</galeid><doaj_id>oai_doaj_org_article_82e31b451980452b9af828c2b63dc0d8</doaj_id><sourcerecordid>A517544004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-7839611c3df98010b601b030a692e0dbe5e03ba8a2e93a0949c1d3f0e97b91703</originalsourceid><addsrcrecordid>eNqNk8tu1TAQhiMEoqXwBggiISFY5OBLbt4gVRWXIxVV4ra1HHuS45LYwXYKfXscTlqdoC6QF7FmvvnH_uNJkqcYbTCt8JtLOzkj-s1oDWwQruuKkHvJMWaUZCVB9P7B_ih55P0lQgWty_JhckQYQWVdl8fJj0_WWKX9CM5DOoDwk4MBTEhtm4YdpI22QZvMBwdjEFdaaZNqE8AJGbQ16ZwwXdjFYCrSX9D3mYJWG1DpOPW9Nl3agR0guOvHyYNW9B6eLN-T5Nv7d1_PPmbnFx-2Z6fnmSwZCVlVU1ZiLKlqWY0wakqEG0SRiFlAqoECEG1ELQgwKhDLmcSKtghY1TBcIXqSPN_rjr31fPHJc8wqikiV0yoS2z2hrLjko9ODcNfcCs3_BqzruHBByx54TYDiJi9wPEtekIaJtia1JE1JlUSqjlpvl25TM4CS0Tsn-pXoOmP0jnf2ihcVLos8jwKvFgFnf07gAx-0l9FIYcBO-3PnBS1JEdEX_6B3326hOhEvoE1rY185i_LTAlexJ0Jz280dVFwKBi3jo2p1jK8KXq8KIhPgd-jE5D3ffvn8_-zF9zX78oDdgejDztt-mp-XX4P5HpTOeu-gvTUZIz7PxI0bfJ4JvsxELHt2-INui26GgP4BftMHRQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973027437</pqid></control><display><type>article</type><title>Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sedlak, Steffen M ; Bauer, Magnus S ; Kluger, Carleen ; Schendel, Leonard C ; Milles, Lukas F ; Pippig, Diana A ; Gaub, Hermann E</creator><contributor>Pastore, Annalisa</contributor><creatorcontrib>Sedlak, Steffen M ; Bauer, Magnus S ; Kluger, Carleen ; Schendel, Leonard C ; Milles, Lukas F ; Pippig, Diana A ; Gaub, Hermann E ; Pastore, Annalisa</creatorcontrib><description>The widely used interaction of the homotetramer streptavidin with the small molecule biotin has been intensively studied by force spectroscopy and has become a model system for receptor ligand interaction. However, streptavidin's tetravalency results in diverse force propagation pathways through the different binding interfaces. This multiplicity gives rise to polydisperse force spectroscopy data. Here, we present an engineered monovalent streptavidin tetramer with a single cysteine in its functional subunit that allows for site-specific immobilization of the molecule, orthogonal to biotin binding. Functionality of streptavidin and its binding properties for biotin remain unaffected. We thus created a stable and reliable molecular anchor with a unique high-affinity binding site for biotinylated molecules or nanoparticles, which we expect to be useful for many single-molecule applications. To characterize the mechanical properties of the bond between biotin and our monovalent streptavidin, we performed force spectroscopy experiments using an atomic force microscope. We were able to conduct measurements at the single-molecule level with 1:1-stoichiometry and a well-defined geometry, in which force exclusively propagates through a single subunit of the streptavidin tetramer. For different force loading rates, we obtained narrow force distributions of the bond rupture forces ranging from 200 pN at 1,500 pN/s to 230 pN at 110,000 pN/s. The data are in very good agreement with the standard Bell-Evans model with a single potential barrier at Δx0 = 0.38 nm and a zero-force off-rate koff,0 in the 10-6 s-1 range.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0188722</identifier><identifier>PMID: 29206886</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Atomic beam spectroscopy ; Atomic force microscopy ; Binding sites ; Biology and Life Sciences ; Biotin ; Cysteine ; Dosage and administration ; Experiments ; Health aspects ; Immobilization ; Interfaces ; Ligands ; Measurement ; Mechanical properties ; Medicine and Health Sciences ; Microscopy ; Nanoparticles ; Physical Sciences ; Polyethylene glycol ; Potential barriers ; Research and Analysis Methods ; Spectroscopy ; Spectrum analysis ; Stoichiometry ; Streptavidin</subject><ispartof>PloS one, 2017-12, Vol.12 (12), p.e0188722-e0188722</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Sedlak et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Sedlak et al 2017 Sedlak et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-7839611c3df98010b601b030a692e0dbe5e03ba8a2e93a0949c1d3f0e97b91703</citedby><cites>FETCH-LOGICAL-c692t-7839611c3df98010b601b030a692e0dbe5e03ba8a2e93a0949c1d3f0e97b91703</cites><orcidid>0000-0002-4220-6088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716544/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716544/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29206886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pastore, Annalisa</contributor><creatorcontrib>Sedlak, Steffen M</creatorcontrib><creatorcontrib>Bauer, Magnus S</creatorcontrib><creatorcontrib>Kluger, Carleen</creatorcontrib><creatorcontrib>Schendel, Leonard C</creatorcontrib><creatorcontrib>Milles, Lukas F</creatorcontrib><creatorcontrib>Pippig, Diana A</creatorcontrib><creatorcontrib>Gaub, Hermann E</creatorcontrib><title>Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The widely used interaction of the homotetramer streptavidin with the small molecule biotin has been intensively studied by force spectroscopy and has become a model system for receptor ligand interaction. However, streptavidin's tetravalency results in diverse force propagation pathways through the different binding interfaces. This multiplicity gives rise to polydisperse force spectroscopy data. Here, we present an engineered monovalent streptavidin tetramer with a single cysteine in its functional subunit that allows for site-specific immobilization of the molecule, orthogonal to biotin binding. Functionality of streptavidin and its binding properties for biotin remain unaffected. We thus created a stable and reliable molecular anchor with a unique high-affinity binding site for biotinylated molecules or nanoparticles, which we expect to be useful for many single-molecule applications. To characterize the mechanical properties of the bond between biotin and our monovalent streptavidin, we performed force spectroscopy experiments using an atomic force microscope. We were able to conduct measurements at the single-molecule level with 1:1-stoichiometry and a well-defined geometry, in which force exclusively propagates through a single subunit of the streptavidin tetramer. For different force loading rates, we obtained narrow force distributions of the bond rupture forces ranging from 200 pN at 1,500 pN/s to 230 pN at 110,000 pN/s. The data are in very good agreement with the standard Bell-Evans model with a single potential barrier at Δx0 = 0.38 nm and a zero-force off-rate koff,0 in the 10-6 s-1 range.</description><subject>Atomic beam spectroscopy</subject><subject>Atomic force microscopy</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Biotin</subject><subject>Cysteine</subject><subject>Dosage and administration</subject><subject>Experiments</subject><subject>Health aspects</subject><subject>Immobilization</subject><subject>Interfaces</subject><subject>Ligands</subject><subject>Measurement</subject><subject>Mechanical properties</subject><subject>Medicine and Health Sciences</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Physical Sciences</subject><subject>Polyethylene glycol</subject><subject>Potential barriers</subject><subject>Research and Analysis Methods</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stoichiometry</subject><subject>Streptavidin</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8tu1TAQhiMEoqXwBggiISFY5OBLbt4gVRWXIxVV4ra1HHuS45LYwXYKfXscTlqdoC6QF7FmvvnH_uNJkqcYbTCt8JtLOzkj-s1oDWwQruuKkHvJMWaUZCVB9P7B_ih55P0lQgWty_JhckQYQWVdl8fJj0_WWKX9CM5DOoDwk4MBTEhtm4YdpI22QZvMBwdjEFdaaZNqE8AJGbQ16ZwwXdjFYCrSX9D3mYJWG1DpOPW9Nl3agR0guOvHyYNW9B6eLN-T5Nv7d1_PPmbnFx-2Z6fnmSwZCVlVU1ZiLKlqWY0wakqEG0SRiFlAqoECEG1ELQgwKhDLmcSKtghY1TBcIXqSPN_rjr31fPHJc8wqikiV0yoS2z2hrLjko9ODcNfcCs3_BqzruHBByx54TYDiJi9wPEtekIaJtia1JE1JlUSqjlpvl25TM4CS0Tsn-pXoOmP0jnf2ihcVLos8jwKvFgFnf07gAx-0l9FIYcBO-3PnBS1JEdEX_6B3326hOhEvoE1rY185i_LTAlexJ0Jz280dVFwKBi3jo2p1jK8KXq8KIhPgd-jE5D3ffvn8_-zF9zX78oDdgejDztt-mp-XX4P5HpTOeu-gvTUZIz7PxI0bfJ4JvsxELHt2-INui26GgP4BftMHRQ</recordid><startdate>20171205</startdate><enddate>20171205</enddate><creator>Sedlak, Steffen M</creator><creator>Bauer, Magnus S</creator><creator>Kluger, Carleen</creator><creator>Schendel, Leonard C</creator><creator>Milles, Lukas F</creator><creator>Pippig, Diana A</creator><creator>Gaub, Hermann E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4220-6088</orcidid></search><sort><creationdate>20171205</creationdate><title>Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry</title><author>Sedlak, Steffen M ; Bauer, Magnus S ; Kluger, Carleen ; Schendel, Leonard C ; Milles, Lukas F ; Pippig, Diana A ; Gaub, Hermann E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-7839611c3df98010b601b030a692e0dbe5e03ba8a2e93a0949c1d3f0e97b91703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic beam spectroscopy</topic><topic>Atomic force microscopy</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Biotin</topic><topic>Cysteine</topic><topic>Dosage and administration</topic><topic>Experiments</topic><topic>Health aspects</topic><topic>Immobilization</topic><topic>Interfaces</topic><topic>Ligands</topic><topic>Measurement</topic><topic>Mechanical properties</topic><topic>Medicine and Health Sciences</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Physical Sciences</topic><topic>Polyethylene glycol</topic><topic>Potential barriers</topic><topic>Research and Analysis Methods</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stoichiometry</topic><topic>Streptavidin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sedlak, Steffen M</creatorcontrib><creatorcontrib>Bauer, Magnus S</creatorcontrib><creatorcontrib>Kluger, Carleen</creatorcontrib><creatorcontrib>Schendel, Leonard C</creatorcontrib><creatorcontrib>Milles, Lukas F</creatorcontrib><creatorcontrib>Pippig, Diana A</creatorcontrib><creatorcontrib>Gaub, Hermann E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sedlak, Steffen M</au><au>Bauer, Magnus S</au><au>Kluger, Carleen</au><au>Schendel, Leonard C</au><au>Milles, Lukas F</au><au>Pippig, Diana A</au><au>Gaub, Hermann E</au><au>Pastore, Annalisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-12-05</date><risdate>2017</risdate><volume>12</volume><issue>12</issue><spage>e0188722</spage><epage>e0188722</epage><pages>e0188722-e0188722</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The widely used interaction of the homotetramer streptavidin with the small molecule biotin has been intensively studied by force spectroscopy and has become a model system for receptor ligand interaction. However, streptavidin's tetravalency results in diverse force propagation pathways through the different binding interfaces. This multiplicity gives rise to polydisperse force spectroscopy data. Here, we present an engineered monovalent streptavidin tetramer with a single cysteine in its functional subunit that allows for site-specific immobilization of the molecule, orthogonal to biotin binding. Functionality of streptavidin and its binding properties for biotin remain unaffected. We thus created a stable and reliable molecular anchor with a unique high-affinity binding site for biotinylated molecules or nanoparticles, which we expect to be useful for many single-molecule applications. To characterize the mechanical properties of the bond between biotin and our monovalent streptavidin, we performed force spectroscopy experiments using an atomic force microscope. We were able to conduct measurements at the single-molecule level with 1:1-stoichiometry and a well-defined geometry, in which force exclusively propagates through a single subunit of the streptavidin tetramer. For different force loading rates, we obtained narrow force distributions of the bond rupture forces ranging from 200 pN at 1,500 pN/s to 230 pN at 110,000 pN/s. The data are in very good agreement with the standard Bell-Evans model with a single potential barrier at Δx0 = 0.38 nm and a zero-force off-rate koff,0 in the 10-6 s-1 range.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29206886</pmid><doi>10.1371/journal.pone.0188722</doi><tpages>e0188722</tpages><orcidid>https://orcid.org/0000-0002-4220-6088</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-12, Vol.12 (12), p.e0188722-e0188722 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1973027437 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Atomic beam spectroscopy Atomic force microscopy Binding sites Biology and Life Sciences Biotin Cysteine Dosage and administration Experiments Health aspects Immobilization Interfaces Ligands Measurement Mechanical properties Medicine and Health Sciences Microscopy Nanoparticles Physical Sciences Polyethylene glycol Potential barriers Research and Analysis Methods Spectroscopy Spectrum analysis Stoichiometry Streptavidin |
title | Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A06%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monodisperse%20measurement%20of%20the%20biotin-streptavidin%20interaction%20strength%20in%20a%20well-defined%20pulling%20geometry&rft.jtitle=PloS%20one&rft.au=Sedlak,%20Steffen%20M&rft.date=2017-12-05&rft.volume=12&rft.issue=12&rft.spage=e0188722&rft.epage=e0188722&rft.pages=e0188722-e0188722&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0188722&rft_dat=%3Cgale_plos_%3EA517544004%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973027437&rft_id=info:pmid/29206886&rft_galeid=A517544004&rft_doaj_id=oai_doaj_org_article_82e31b451980452b9af828c2b63dc0d8&rfr_iscdi=true |