Genetic variation in Dip5, an amino acid permease, and Pdr5, a multiple drug transporter, regulates glyphosate resistance in S. cerevisiae
S. cerevisiae from different environments are subject to a wide range of selective pressures, whether intentional or by happenstance. Chemicals classified by their application, such as herbicides, fungicides and antibiotics, can affect non-target organisms. First marketed as RoundUp™, glyphosate is...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-11, Vol.12 (11), p.e0187522 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | e0187522 |
container_title | PloS one |
container_volume | 12 |
creator | Rong-Mullins, Xiaoqing Ravishankar, Apoorva McNeal, Kirsten A Lonergan, Zachery R Biega, Audrey C Creamer, J Philip Gallagher, Jennifer E G |
description | S. cerevisiae from different environments are subject to a wide range of selective pressures, whether intentional or by happenstance. Chemicals classified by their application, such as herbicides, fungicides and antibiotics, can affect non-target organisms. First marketed as RoundUp™, glyphosate is the most widely used herbicide. In plants, glyphosate inhibits EPSPS, of the shikimate pathway, which is present in many organisms but lacking in mammals. The shikimate pathway produces chorismate which is the precursor to all the aromatic amino acids, para-aminobenzoic acid, and Coenzyme Q10. Crops engineered to be resistant to glyphosate contain a homolog of EPSPS that is not bound by glyphosate. Here, we show that S. cerevisiae has a wide-range of glyphosate resistance. Sequence comparison between the target proteins, i.e., the plant EPSPS and the yeast orthologous protein Aro1, predicted that yeast would be resistant to glyphosate. However, the growth variation seen in the subset of yeast tested was not due to polymorphisms within Aro1, instead, it was caused by genetic variation in an ABC multiple drug transporter, Pdr5, and an amino acid permease, Dip5. Using genetic variation as a probe into glyphosate response, we uncovered mechanisms that contribute to the transportation of glyphosate in and out of the cell. Taking advantage of the natural genetic variation within yeast and measuring growth under different conditions that would change the use of the shikimate pathway, we uncovered a general transport mechanism of glyphosate into eukaryotic cells. |
doi_str_mv | 10.1371/journal.pone.0187522 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1966423994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A515067237</galeid><doaj_id>oai_doaj_org_article_54063b3384154cd9bff273703535eaf4</doaj_id><sourcerecordid>A515067237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-cce8246df9c77806a7bc7146abe493c2c124efeeb64ff581955b22206cd0d3fb3</originalsourceid><addsrcrecordid>eNqNk2-L1DAQxoso3nn6DUQDgiDcrvnTpO0b4Tj1XDg48dS3IU0n3RxtU5N28b6Cn9rU7R1bUJC8SJj85pnhYSZJnhO8Jiwjb2_c6DvVrHvXwRqTPOOUPkiOScHoSlDMHh68j5InIdxgzFkuxOPkiBaE85yJ4-TXBXQwWI12yls1WNch26H3tuenSHVItbZzSGlboR58CyrAFK_Q58pPBGrHZrB9A6jyY40Gr7rQOz-AP0Ue6rFRAwRUN7f91oX4jsFgw6A6DVOd6zXS4GFng1XwNHlkVBPg2XyfJN8-fvh6_ml1eXWxOT-7XGlR0GGlNeQ0FZUpdJblWKis1BlJhSohLZimmtAUDEApUmN4TgrOS0opFrrCFTMlO0le7nX7xgU52xgkKYRIKSuKNBKbPVE5dSN7b1vlb6VTVv4JOF9L5aNpDUieYsFKxvKU8FRXRWkMzViGGWcclJm03s3VxrKFSkMXTWoWosufzm5l7XaSi4JngkaBV7OAdz9GCMM_Wp6pWsWubGdcFNOtDVqeccKxyCjLIrX-CxVPBa3VcZCMjfFFwptFQmQG-DnUagxBbq6__D979X3Jvj5gt6CaYRtcM04DGJZguge1dyF4MPfOESynPbhzQ057IOc9iGkvDl2_T7obfPYb5cADrA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966423994</pqid></control><display><type>article</type><title>Genetic variation in Dip5, an amino acid permease, and Pdr5, a multiple drug transporter, regulates glyphosate resistance in S. cerevisiae</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Rong-Mullins, Xiaoqing ; Ravishankar, Apoorva ; McNeal, Kirsten A ; Lonergan, Zachery R ; Biega, Audrey C ; Creamer, J Philip ; Gallagher, Jennifer E G</creator><contributor>Louis, Edward J</contributor><creatorcontrib>Rong-Mullins, Xiaoqing ; Ravishankar, Apoorva ; McNeal, Kirsten A ; Lonergan, Zachery R ; Biega, Audrey C ; Creamer, J Philip ; Gallagher, Jennifer E G ; Louis, Edward J</creatorcontrib><description>S. cerevisiae from different environments are subject to a wide range of selective pressures, whether intentional or by happenstance. Chemicals classified by their application, such as herbicides, fungicides and antibiotics, can affect non-target organisms. First marketed as RoundUp™, glyphosate is the most widely used herbicide. In plants, glyphosate inhibits EPSPS, of the shikimate pathway, which is present in many organisms but lacking in mammals. The shikimate pathway produces chorismate which is the precursor to all the aromatic amino acids, para-aminobenzoic acid, and Coenzyme Q10. Crops engineered to be resistant to glyphosate contain a homolog of EPSPS that is not bound by glyphosate. Here, we show that S. cerevisiae has a wide-range of glyphosate resistance. Sequence comparison between the target proteins, i.e., the plant EPSPS and the yeast orthologous protein Aro1, predicted that yeast would be resistant to glyphosate. However, the growth variation seen in the subset of yeast tested was not due to polymorphisms within Aro1, instead, it was caused by genetic variation in an ABC multiple drug transporter, Pdr5, and an amino acid permease, Dip5. Using genetic variation as a probe into glyphosate response, we uncovered mechanisms that contribute to the transportation of glyphosate in and out of the cell. Taking advantage of the natural genetic variation within yeast and measuring growth under different conditions that would change the use of the shikimate pathway, we uncovered a general transport mechanism of glyphosate into eukaryotic cells.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0187522</identifier><identifier>PMID: 29155836</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>3-Phosphoshikimate 1-Carboxyvinyltransferase - genetics ; Amino Acid Transport Systems - genetics ; Amino acids ; Antibiotics ; ATP-Binding Cassette Transporters - genetics ; Bacteria ; Baking yeast ; Biology ; Biology and Life Sciences ; Brewer's yeast ; Coenzyme Q10 ; Copper ; Drug resistance ; Drug resistance in microorganisms ; Fungicides ; Genes ; Genetic aspects ; Genetic diversity ; Genetic Variation ; Genomes ; Glycine - analogs & derivatives ; Glycine - toxicity ; Glyphosate ; Herbicide resistance ; Herbicide Resistance - genetics ; Herbicides ; Herbicides - toxicity ; Homology ; Metabolic Networks and Pathways - drug effects ; para-Aminobenzoic acid ; Permease ; Phosphorus-Oxygen Lyases - genetics ; Physical Sciences ; Plants - drug effects ; Proteins ; Research and Analysis Methods ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Shikimic Acid - metabolism ; Single nucleotide polymorphisms ; Yeast</subject><ispartof>PloS one, 2017-11, Vol.12 (11), p.e0187522</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Rong-Mullins et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Rong-Mullins et al 2017 Rong-Mullins et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-cce8246df9c77806a7bc7146abe493c2c124efeeb64ff581955b22206cd0d3fb3</citedby><cites>FETCH-LOGICAL-c692t-cce8246df9c77806a7bc7146abe493c2c124efeeb64ff581955b22206cd0d3fb3</cites><orcidid>0000-0002-6163-3181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695762/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695762/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29155836$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Louis, Edward J</contributor><creatorcontrib>Rong-Mullins, Xiaoqing</creatorcontrib><creatorcontrib>Ravishankar, Apoorva</creatorcontrib><creatorcontrib>McNeal, Kirsten A</creatorcontrib><creatorcontrib>Lonergan, Zachery R</creatorcontrib><creatorcontrib>Biega, Audrey C</creatorcontrib><creatorcontrib>Creamer, J Philip</creatorcontrib><creatorcontrib>Gallagher, Jennifer E G</creatorcontrib><title>Genetic variation in Dip5, an amino acid permease, and Pdr5, a multiple drug transporter, regulates glyphosate resistance in S. cerevisiae</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>S. cerevisiae from different environments are subject to a wide range of selective pressures, whether intentional or by happenstance. Chemicals classified by their application, such as herbicides, fungicides and antibiotics, can affect non-target organisms. First marketed as RoundUp™, glyphosate is the most widely used herbicide. In plants, glyphosate inhibits EPSPS, of the shikimate pathway, which is present in many organisms but lacking in mammals. The shikimate pathway produces chorismate which is the precursor to all the aromatic amino acids, para-aminobenzoic acid, and Coenzyme Q10. Crops engineered to be resistant to glyphosate contain a homolog of EPSPS that is not bound by glyphosate. Here, we show that S. cerevisiae has a wide-range of glyphosate resistance. Sequence comparison between the target proteins, i.e., the plant EPSPS and the yeast orthologous protein Aro1, predicted that yeast would be resistant to glyphosate. However, the growth variation seen in the subset of yeast tested was not due to polymorphisms within Aro1, instead, it was caused by genetic variation in an ABC multiple drug transporter, Pdr5, and an amino acid permease, Dip5. Using genetic variation as a probe into glyphosate response, we uncovered mechanisms that contribute to the transportation of glyphosate in and out of the cell. Taking advantage of the natural genetic variation within yeast and measuring growth under different conditions that would change the use of the shikimate pathway, we uncovered a general transport mechanism of glyphosate into eukaryotic cells.</description><subject>3-Phosphoshikimate 1-Carboxyvinyltransferase - genetics</subject><subject>Amino Acid Transport Systems - genetics</subject><subject>Amino acids</subject><subject>Antibiotics</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>Bacteria</subject><subject>Baking yeast</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Brewer's yeast</subject><subject>Coenzyme Q10</subject><subject>Copper</subject><subject>Drug resistance</subject><subject>Drug resistance in microorganisms</subject><subject>Fungicides</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genomes</subject><subject>Glycine - analogs & derivatives</subject><subject>Glycine - toxicity</subject><subject>Glyphosate</subject><subject>Herbicide resistance</subject><subject>Herbicide Resistance - genetics</subject><subject>Herbicides</subject><subject>Herbicides - toxicity</subject><subject>Homology</subject><subject>Metabolic Networks and Pathways - drug effects</subject><subject>para-Aminobenzoic acid</subject><subject>Permease</subject><subject>Phosphorus-Oxygen Lyases - genetics</subject><subject>Physical Sciences</subject><subject>Plants - drug effects</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Shikimic Acid - metabolism</subject><subject>Single nucleotide polymorphisms</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk2-L1DAQxoso3nn6DUQDgiDcrvnTpO0b4Tj1XDg48dS3IU0n3RxtU5N28b6Cn9rU7R1bUJC8SJj85pnhYSZJnhO8Jiwjb2_c6DvVrHvXwRqTPOOUPkiOScHoSlDMHh68j5InIdxgzFkuxOPkiBaE85yJ4-TXBXQwWI12yls1WNch26H3tuenSHVItbZzSGlboR58CyrAFK_Q58pPBGrHZrB9A6jyY40Gr7rQOz-AP0Ue6rFRAwRUN7f91oX4jsFgw6A6DVOd6zXS4GFng1XwNHlkVBPg2XyfJN8-fvh6_ml1eXWxOT-7XGlR0GGlNeQ0FZUpdJblWKis1BlJhSohLZimmtAUDEApUmN4TgrOS0opFrrCFTMlO0le7nX7xgU52xgkKYRIKSuKNBKbPVE5dSN7b1vlb6VTVv4JOF9L5aNpDUieYsFKxvKU8FRXRWkMzViGGWcclJm03s3VxrKFSkMXTWoWosufzm5l7XaSi4JngkaBV7OAdz9GCMM_Wp6pWsWubGdcFNOtDVqeccKxyCjLIrX-CxVPBa3VcZCMjfFFwptFQmQG-DnUagxBbq6__D979X3Jvj5gt6CaYRtcM04DGJZguge1dyF4MPfOESynPbhzQ057IOc9iGkvDl2_T7obfPYb5cADrA</recordid><startdate>20171120</startdate><enddate>20171120</enddate><creator>Rong-Mullins, Xiaoqing</creator><creator>Ravishankar, Apoorva</creator><creator>McNeal, Kirsten A</creator><creator>Lonergan, Zachery R</creator><creator>Biega, Audrey C</creator><creator>Creamer, J Philip</creator><creator>Gallagher, Jennifer E G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6163-3181</orcidid></search><sort><creationdate>20171120</creationdate><title>Genetic variation in Dip5, an amino acid permease, and Pdr5, a multiple drug transporter, regulates glyphosate resistance in S. cerevisiae</title><author>Rong-Mullins, Xiaoqing ; Ravishankar, Apoorva ; McNeal, Kirsten A ; Lonergan, Zachery R ; Biega, Audrey C ; Creamer, J Philip ; Gallagher, Jennifer E G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-cce8246df9c77806a7bc7146abe493c2c124efeeb64ff581955b22206cd0d3fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3-Phosphoshikimate 1-Carboxyvinyltransferase - genetics</topic><topic>Amino Acid Transport Systems - genetics</topic><topic>Amino acids</topic><topic>Antibiotics</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>Bacteria</topic><topic>Baking yeast</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Brewer's yeast</topic><topic>Coenzyme Q10</topic><topic>Copper</topic><topic>Drug resistance</topic><topic>Drug resistance in microorganisms</topic><topic>Fungicides</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genomes</topic><topic>Glycine - analogs & derivatives</topic><topic>Glycine - toxicity</topic><topic>Glyphosate</topic><topic>Herbicide resistance</topic><topic>Herbicide Resistance - genetics</topic><topic>Herbicides</topic><topic>Herbicides - toxicity</topic><topic>Homology</topic><topic>Metabolic Networks and Pathways - drug effects</topic><topic>para-Aminobenzoic acid</topic><topic>Permease</topic><topic>Phosphorus-Oxygen Lyases - genetics</topic><topic>Physical Sciences</topic><topic>Plants - drug effects</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Shikimic Acid - metabolism</topic><topic>Single nucleotide polymorphisms</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rong-Mullins, Xiaoqing</creatorcontrib><creatorcontrib>Ravishankar, Apoorva</creatorcontrib><creatorcontrib>McNeal, Kirsten A</creatorcontrib><creatorcontrib>Lonergan, Zachery R</creatorcontrib><creatorcontrib>Biega, Audrey C</creatorcontrib><creatorcontrib>Creamer, J Philip</creatorcontrib><creatorcontrib>Gallagher, Jennifer E G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rong-Mullins, Xiaoqing</au><au>Ravishankar, Apoorva</au><au>McNeal, Kirsten A</au><au>Lonergan, Zachery R</au><au>Biega, Audrey C</au><au>Creamer, J Philip</au><au>Gallagher, Jennifer E G</au><au>Louis, Edward J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic variation in Dip5, an amino acid permease, and Pdr5, a multiple drug transporter, regulates glyphosate resistance in S. cerevisiae</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-11-20</date><risdate>2017</risdate><volume>12</volume><issue>11</issue><spage>e0187522</spage><pages>e0187522-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>S. cerevisiae from different environments are subject to a wide range of selective pressures, whether intentional or by happenstance. Chemicals classified by their application, such as herbicides, fungicides and antibiotics, can affect non-target organisms. First marketed as RoundUp™, glyphosate is the most widely used herbicide. In plants, glyphosate inhibits EPSPS, of the shikimate pathway, which is present in many organisms but lacking in mammals. The shikimate pathway produces chorismate which is the precursor to all the aromatic amino acids, para-aminobenzoic acid, and Coenzyme Q10. Crops engineered to be resistant to glyphosate contain a homolog of EPSPS that is not bound by glyphosate. Here, we show that S. cerevisiae has a wide-range of glyphosate resistance. Sequence comparison between the target proteins, i.e., the plant EPSPS and the yeast orthologous protein Aro1, predicted that yeast would be resistant to glyphosate. However, the growth variation seen in the subset of yeast tested was not due to polymorphisms within Aro1, instead, it was caused by genetic variation in an ABC multiple drug transporter, Pdr5, and an amino acid permease, Dip5. Using genetic variation as a probe into glyphosate response, we uncovered mechanisms that contribute to the transportation of glyphosate in and out of the cell. Taking advantage of the natural genetic variation within yeast and measuring growth under different conditions that would change the use of the shikimate pathway, we uncovered a general transport mechanism of glyphosate into eukaryotic cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29155836</pmid><doi>10.1371/journal.pone.0187522</doi><tpages>e0187522</tpages><orcidid>https://orcid.org/0000-0002-6163-3181</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-11, Vol.12 (11), p.e0187522 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1966423994 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | 3-Phosphoshikimate 1-Carboxyvinyltransferase - genetics Amino Acid Transport Systems - genetics Amino acids Antibiotics ATP-Binding Cassette Transporters - genetics Bacteria Baking yeast Biology Biology and Life Sciences Brewer's yeast Coenzyme Q10 Copper Drug resistance Drug resistance in microorganisms Fungicides Genes Genetic aspects Genetic diversity Genetic Variation Genomes Glycine - analogs & derivatives Glycine - toxicity Glyphosate Herbicide resistance Herbicide Resistance - genetics Herbicides Herbicides - toxicity Homology Metabolic Networks and Pathways - drug effects para-Aminobenzoic acid Permease Phosphorus-Oxygen Lyases - genetics Physical Sciences Plants - drug effects Proteins Research and Analysis Methods Saccharomyces cerevisiae Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Shikimic Acid - metabolism Single nucleotide polymorphisms Yeast |
title | Genetic variation in Dip5, an amino acid permease, and Pdr5, a multiple drug transporter, regulates glyphosate resistance in S. cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20variation%20in%20Dip5,%20an%20amino%20acid%20permease,%20and%20Pdr5,%20a%20multiple%20drug%20transporter,%20regulates%20glyphosate%20resistance%20in%20S.%20cerevisiae&rft.jtitle=PloS%20one&rft.au=Rong-Mullins,%20Xiaoqing&rft.date=2017-11-20&rft.volume=12&rft.issue=11&rft.spage=e0187522&rft.pages=e0187522-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0187522&rft_dat=%3Cgale_plos_%3EA515067237%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966423994&rft_id=info:pmid/29155836&rft_galeid=A515067237&rft_doaj_id=oai_doaj_org_article_54063b3384154cd9bff273703535eaf4&rfr_iscdi=true |