Enrichment of minor allele of SNPs and genetic prediction of type 2 diabetes risk in British population
Type 2 diabetes (T2D) is a complex disorder characterized by high blood sugar, insulin resistance, and relative lack of insulin. The collective effects of genome wide minor alleles of common SNPs, or the minor allele content (MAC) in an individual, have been linked with quantitative variations of co...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-11, Vol.12 (11), p.e0187644-e0187644 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0187644 |
---|---|
container_issue | 11 |
container_start_page | e0187644 |
container_title | PloS one |
container_volume | 12 |
creator | Lei, Xiaoyun Huang, Shi |
description | Type 2 diabetes (T2D) is a complex disorder characterized by high blood sugar, insulin resistance, and relative lack of insulin. The collective effects of genome wide minor alleles of common SNPs, or the minor allele content (MAC) in an individual, have been linked with quantitative variations of complex traits and diseases. Here we studied MAC in T2D using previously published SNP datasets and found higher MAC in cases relative to matched controls. A set of 357 SNPs was found to have the best predictive accuracy in a British population. A weighted risk score calculated by using this set produced an area under the curve (AUC) score of 0.86, which is comparable to risk models built by phenotypic markers. These results identify a novel genetic risk element in T2D susceptibility and provide a potentially useful genetic method to identify individuals with high risk of T2D. |
doi_str_mv | 10.1371/journal.pone.0187644 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1959661488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513148888</galeid><doaj_id>oai_doaj_org_article_e54f810c88374953ba82b1285a40802f</doaj_id><sourcerecordid>A513148888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5bfeb3e0265924e7292abbea5b4429dba939c38d76384a73e5b6091ab39bb0933</originalsourceid><addsrcrecordid>eNqNk8tu1DAUhiMEoqXwBggiISFYzOD7xJtKpSowUkURBbaWnZxkXJw42Amib4_TSasZ1AXywrfv_-1z7JNlzzFaYrrC7678GDrtlr3vYIlwsRKMPcgOsaRkIQiiD3fGB9mTGK8Q4rQQ4nF2QCSSsuDsMGvOumDLTQvdkPs6b23nQ66dAwfT_PLzl5jrrsob6GCwZd4HqGw5WN9N28N1DznJK6sNDBDzYOPP3Hb5-2AHGzd57_vR6Yl-mj2qtYvwbO6Psu8fzr6dflqcX3xcn56cL0ohybDgpgZDARHBJWGwIpJoY0BzwxiRldGSypIW1UrQgukVBW4EklgbKo1BktKj7OXWt3c-qjlHUWHJpRCYFUUi1lui8vpK9cG2Olwrr626WfChUTqkUB0o4KwuMCqTasUkp0YXxGBScM1QgUidvI7n00bTQlWmLAbt9kz3dzq7UY3_rbgQkgmeDN7MBsH_GiEOqrWxBOd0B36c7i0EYYwSnNBX_6D3RzdTjU4B2K726dxyMlUnHNOJuaGW91CpVdDaMn2o2qb1PcHbPUFiBvgzNHqMUa0vv_4_e_Fjn329w25Au2ETvRunLxP3QbYFy-BjDFDfJRkjNdXDbTbUVA9qrocke7H7QHei2wKgfwEm2QRu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1959661488</pqid></control><display><type>article</type><title>Enrichment of minor allele of SNPs and genetic prediction of type 2 diabetes risk in British population</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lei, Xiaoyun ; Huang, Shi</creator><contributor>Baroni, Marco Giorgio</contributor><creatorcontrib>Lei, Xiaoyun ; Huang, Shi ; Baroni, Marco Giorgio</creatorcontrib><description>Type 2 diabetes (T2D) is a complex disorder characterized by high blood sugar, insulin resistance, and relative lack of insulin. The collective effects of genome wide minor alleles of common SNPs, or the minor allele content (MAC) in an individual, have been linked with quantitative variations of complex traits and diseases. Here we studied MAC in T2D using previously published SNP datasets and found higher MAC in cases relative to matched controls. A set of 357 SNPs was found to have the best predictive accuracy in a British population. A weighted risk score calculated by using this set produced an area under the curve (AUC) score of 0.86, which is comparable to risk models built by phenotypic markers. These results identify a novel genetic risk element in T2D susceptibility and provide a potentially useful genetic method to identify individuals with high risk of T2D.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0187644</identifier><identifier>PMID: 29099854</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Alleles ; Bioinformatics ; Biology and Life Sciences ; Consortia ; Datasets ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Type 2 - genetics ; Female ; Genetic Predisposition to Disease ; Genetics ; Genomes ; Health risk assessment ; Health risks ; Humans ; Hyperglycemia ; Insulin ; Insulin resistance ; Laboratories ; Life sciences ; Male ; Medicine and Health Sciences ; Models, Theoretical ; Physical Sciences ; Polymorphism, Single Nucleotide ; Predictions ; Principal components analysis ; Research and Analysis Methods ; Risk ; Risk factors ; Schizophrenia ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Studies ; Sugar ; Type 2 diabetes ; United Kingdom</subject><ispartof>PloS one, 2017-11, Vol.12 (11), p.e0187644-e0187644</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Lei, Huang. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Lei, Huang 2017 Lei, Huang</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5bfeb3e0265924e7292abbea5b4429dba939c38d76384a73e5b6091ab39bb0933</citedby><cites>FETCH-LOGICAL-c692t-5bfeb3e0265924e7292abbea5b4429dba939c38d76384a73e5b6091ab39bb0933</cites><orcidid>0000-0003-2674-2830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669465/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669465/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29099854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Baroni, Marco Giorgio</contributor><creatorcontrib>Lei, Xiaoyun</creatorcontrib><creatorcontrib>Huang, Shi</creatorcontrib><title>Enrichment of minor allele of SNPs and genetic prediction of type 2 diabetes risk in British population</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Type 2 diabetes (T2D) is a complex disorder characterized by high blood sugar, insulin resistance, and relative lack of insulin. The collective effects of genome wide minor alleles of common SNPs, or the minor allele content (MAC) in an individual, have been linked with quantitative variations of complex traits and diseases. Here we studied MAC in T2D using previously published SNP datasets and found higher MAC in cases relative to matched controls. A set of 357 SNPs was found to have the best predictive accuracy in a British population. A weighted risk score calculated by using this set produced an area under the curve (AUC) score of 0.86, which is comparable to risk models built by phenotypic markers. These results identify a novel genetic risk element in T2D susceptibility and provide a potentially useful genetic method to identify individuals with high risk of T2D.</description><subject>Adult</subject><subject>Alleles</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Consortia</subject><subject>Datasets</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Female</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Laboratories</subject><subject>Life sciences</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Models, Theoretical</subject><subject>Physical Sciences</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Predictions</subject><subject>Principal components analysis</subject><subject>Research and Analysis Methods</subject><subject>Risk</subject><subject>Risk factors</subject><subject>Schizophrenia</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Studies</subject><subject>Sugar</subject><subject>Type 2 diabetes</subject><subject>United Kingdom</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8tu1DAUhiMEoqXwBggiISFYzOD7xJtKpSowUkURBbaWnZxkXJw42Amib4_TSasZ1AXywrfv_-1z7JNlzzFaYrrC7678GDrtlr3vYIlwsRKMPcgOsaRkIQiiD3fGB9mTGK8Q4rQQ4nF2QCSSsuDsMGvOumDLTQvdkPs6b23nQ66dAwfT_PLzl5jrrsob6GCwZd4HqGw5WN9N28N1DznJK6sNDBDzYOPP3Hb5-2AHGzd57_vR6Yl-mj2qtYvwbO6Psu8fzr6dflqcX3xcn56cL0ohybDgpgZDARHBJWGwIpJoY0BzwxiRldGSypIW1UrQgukVBW4EklgbKo1BktKj7OXWt3c-qjlHUWHJpRCYFUUi1lui8vpK9cG2Olwrr626WfChUTqkUB0o4KwuMCqTasUkp0YXxGBScM1QgUidvI7n00bTQlWmLAbt9kz3dzq7UY3_rbgQkgmeDN7MBsH_GiEOqrWxBOd0B36c7i0EYYwSnNBX_6D3RzdTjU4B2K726dxyMlUnHNOJuaGW91CpVdDaMn2o2qb1PcHbPUFiBvgzNHqMUa0vv_4_e_Fjn329w25Au2ETvRunLxP3QbYFy-BjDFDfJRkjNdXDbTbUVA9qrocke7H7QHei2wKgfwEm2QRu</recordid><startdate>20171103</startdate><enddate>20171103</enddate><creator>Lei, Xiaoyun</creator><creator>Huang, Shi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2674-2830</orcidid></search><sort><creationdate>20171103</creationdate><title>Enrichment of minor allele of SNPs and genetic prediction of type 2 diabetes risk in British population</title><author>Lei, Xiaoyun ; Huang, Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5bfeb3e0265924e7292abbea5b4429dba939c38d76384a73e5b6091ab39bb0933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Alleles</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Consortia</topic><topic>Datasets</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Female</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Laboratories</topic><topic>Life sciences</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Models, Theoretical</topic><topic>Physical Sciences</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Predictions</topic><topic>Principal components analysis</topic><topic>Research and Analysis Methods</topic><topic>Risk</topic><topic>Risk factors</topic><topic>Schizophrenia</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Studies</topic><topic>Sugar</topic><topic>Type 2 diabetes</topic><topic>United Kingdom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Xiaoyun</creatorcontrib><creatorcontrib>Huang, Shi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Xiaoyun</au><au>Huang, Shi</au><au>Baroni, Marco Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enrichment of minor allele of SNPs and genetic prediction of type 2 diabetes risk in British population</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-11-03</date><risdate>2017</risdate><volume>12</volume><issue>11</issue><spage>e0187644</spage><epage>e0187644</epage><pages>e0187644-e0187644</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Type 2 diabetes (T2D) is a complex disorder characterized by high blood sugar, insulin resistance, and relative lack of insulin. The collective effects of genome wide minor alleles of common SNPs, or the minor allele content (MAC) in an individual, have been linked with quantitative variations of complex traits and diseases. Here we studied MAC in T2D using previously published SNP datasets and found higher MAC in cases relative to matched controls. A set of 357 SNPs was found to have the best predictive accuracy in a British population. A weighted risk score calculated by using this set produced an area under the curve (AUC) score of 0.86, which is comparable to risk models built by phenotypic markers. These results identify a novel genetic risk element in T2D susceptibility and provide a potentially useful genetic method to identify individuals with high risk of T2D.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29099854</pmid><doi>10.1371/journal.pone.0187644</doi><tpages>e0187644</tpages><orcidid>https://orcid.org/0000-0003-2674-2830</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-11, Vol.12 (11), p.e0187644-e0187644 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1959661488 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adult Alleles Bioinformatics Biology and Life Sciences Consortia Datasets Diabetes Diabetes mellitus Diabetes Mellitus, Type 2 - genetics Female Genetic Predisposition to Disease Genetics Genomes Health risk assessment Health risks Humans Hyperglycemia Insulin Insulin resistance Laboratories Life sciences Male Medicine and Health Sciences Models, Theoretical Physical Sciences Polymorphism, Single Nucleotide Predictions Principal components analysis Research and Analysis Methods Risk Risk factors Schizophrenia Single nucleotide polymorphisms Single-nucleotide polymorphism Studies Sugar Type 2 diabetes United Kingdom |
title | Enrichment of minor allele of SNPs and genetic prediction of type 2 diabetes risk in British population |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enrichment%20of%20minor%20allele%20of%20SNPs%20and%20genetic%20prediction%20of%20type%202%20diabetes%20risk%20in%20British%20population&rft.jtitle=PloS%20one&rft.au=Lei,%20Xiaoyun&rft.date=2017-11-03&rft.volume=12&rft.issue=11&rft.spage=e0187644&rft.epage=e0187644&rft.pages=e0187644-e0187644&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0187644&rft_dat=%3Cgale_plos_%3EA513148888%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1959661488&rft_id=info:pmid/29099854&rft_galeid=A513148888&rft_doaj_id=oai_doaj_org_article_e54f810c88374953ba82b1285a40802f&rfr_iscdi=true |