Recent development of risk-prediction models for incident hypertension: An updated systematic review

Hypertension is a leading global health threat and a major cardiovascular disease. Since clinical interventions are effective in delaying the disease progression from prehypertension to hypertension, diagnostic prediction models to identify patient populations at high risk for hypertension are imper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-10, Vol.12 (10), p.e0187240-e0187240
Hauptverfasser: Sun, Dongdong, Liu, Jielin, Xiao, Lei, Liu, Ya, Wang, Zuoguang, Li, Chuang, Jin, Yongxin, Zhao, Qiong, Wen, Shaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0187240
container_issue 10
container_start_page e0187240
container_title PloS one
container_volume 12
creator Sun, Dongdong
Liu, Jielin
Xiao, Lei
Liu, Ya
Wang, Zuoguang
Li, Chuang
Jin, Yongxin
Zhao, Qiong
Wen, Shaojun
description Hypertension is a leading global health threat and a major cardiovascular disease. Since clinical interventions are effective in delaying the disease progression from prehypertension to hypertension, diagnostic prediction models to identify patient populations at high risk for hypertension are imperative. Both PubMed and Embase databases were searched for eligible reports of either prediction models or risk scores of hypertension. The study data were collected, including risk factors, statistic methods, characteristics of study design and participants, performance measurement, etc. From the searched literature, 26 studies reporting 48 prediction models were selected. Among them, 20 reports studied the established models using traditional risk factors, such as body mass index (BMI), age, smoking, blood pressure (BP) level, parental history of hypertension, and biochemical factors, whereas 6 reports used genetic risk score (GRS) as the prediction factor. AUC ranged from 0.64 to 0.97, and C-statistic ranged from 60% to 90%. The traditional models are still the predominant risk prediction models for hypertension, but recently, more models have begun to incorporate genetic factors as part of their model predictors. However, these genetic predictors need to be well selected. The current reported models have acceptable to good discrimination and calibration ability, but whether the models can be applied in clinical practice still needs more validation and adjustment.
doi_str_mv 10.1371/journal.pone.0187240
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1957752406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A512307216</galeid><doaj_id>oai_doaj_org_article_0c71043b9b974a2fabb7de8de6d654fc</doaj_id><sourcerecordid>A512307216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-bf1eb634a513255255307cfdb59bb41c8cec38dc9ec8dcf979e1f52ea0612b6c3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlo0sYLYVj8GFhYWD9uQ5qczmRtm5q0o_PvTXe6y1T2QlrakDznPcmbc5LkOUZLTHP87toNvlX1snMtLBEucpKhB8kpFpQsOEH04dH4JHkSwjVCjBacP05OiEBFRgQ9TcwVaGj71MAOatc149hVqbfh56LzYKzurWvTxhmoQ1o5n9pWWzNi230Hvoc2ROB9umrToTOqB5OGfeihUb3VqYedhd9Pk0eVqgM8m_5nyfdPH7-df1lcXH5en68uFpoL0i_KCkPJaaYYpoSx-FKU68qUTJRlhnWhQdPCaAE6fiuRC8AVI6AQx6Tkmp4lLw-6Xe2CnAwKEguW5yzawyOxPhDGqWvZedsov5dOWXkz4fxGKh83XoNEOscoo6UoRZ4pUqmyzA0UBrjhLKvGbB-mbEPZgBlt9Kqeic5XWruVG7eTjHOCcxEF3kwC3v0aIPSysUFDXasW3HCz74JRxjIc0Vf_oPefbqI2Kh7AtpWLefUoKlcMk-gmwSO1vIeKj4HG6lhNlY3zs4C3s4DI9PCn36ghBLn-evX_7OWPOfv6iN2CqvttcPUwVlyYg9kB1N6F4KG6MxkjOTbDrRtybAY5NUMMe3F8QXdBt9VP_wKwbQZy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957752406</pqid></control><display><type>article</type><title>Recent development of risk-prediction models for incident hypertension: An updated systematic review</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sun, Dongdong ; Liu, Jielin ; Xiao, Lei ; Liu, Ya ; Wang, Zuoguang ; Li, Chuang ; Jin, Yongxin ; Zhao, Qiong ; Wen, Shaojun</creator><contributor>Shimosawa, Tatsuo</contributor><creatorcontrib>Sun, Dongdong ; Liu, Jielin ; Xiao, Lei ; Liu, Ya ; Wang, Zuoguang ; Li, Chuang ; Jin, Yongxin ; Zhao, Qiong ; Wen, Shaojun ; Shimosawa, Tatsuo</creatorcontrib><description>Hypertension is a leading global health threat and a major cardiovascular disease. Since clinical interventions are effective in delaying the disease progression from prehypertension to hypertension, diagnostic prediction models to identify patient populations at high risk for hypertension are imperative. Both PubMed and Embase databases were searched for eligible reports of either prediction models or risk scores of hypertension. The study data were collected, including risk factors, statistic methods, characteristics of study design and participants, performance measurement, etc. From the searched literature, 26 studies reporting 48 prediction models were selected. Among them, 20 reports studied the established models using traditional risk factors, such as body mass index (BMI), age, smoking, blood pressure (BP) level, parental history of hypertension, and biochemical factors, whereas 6 reports used genetic risk score (GRS) as the prediction factor. AUC ranged from 0.64 to 0.97, and C-statistic ranged from 60% to 90%. The traditional models are still the predominant risk prediction models for hypertension, but recently, more models have begun to incorporate genetic factors as part of their model predictors. However, these genetic predictors need to be well selected. The current reported models have acceptable to good discrimination and calibration ability, but whether the models can be applied in clinical practice still needs more validation and adjustment.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0187240</identifier><identifier>PMID: 29084293</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Blood pressure ; Body mass ; Body mass index ; Body size ; Cardiovascular diseases ; Diagnosis ; Diagnostic systems ; Epidemiology ; Genetic factors ; Genomes ; Global health ; Glucose ; Health aspects ; Heart ; Hospitals ; Humans ; Hypertension ; Hypertension - physiopathology ; Identification methods ; Influence ; Mathematical models ; Medicine ; Meta-analysis ; Models, Theoretical ; Performance measurement ; Population ; Prediction models ; Public health ; Researchers ; Risk analysis ; Risk Assessment ; Risk factors ; Smoking ; Statistical analysis ; Statistical methods ; Studies ; Upgrading ; Young adults</subject><ispartof>PloS one, 2017-10, Vol.12 (10), p.e0187240-e0187240</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-bf1eb634a513255255307cfdb59bb41c8cec38dc9ec8dcf979e1f52ea0612b6c3</citedby><cites>FETCH-LOGICAL-c692t-bf1eb634a513255255307cfdb59bb41c8cec38dc9ec8dcf979e1f52ea0612b6c3</cites><orcidid>0000-0001-5839-9518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662179/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662179/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29084293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Shimosawa, Tatsuo</contributor><creatorcontrib>Sun, Dongdong</creatorcontrib><creatorcontrib>Liu, Jielin</creatorcontrib><creatorcontrib>Xiao, Lei</creatorcontrib><creatorcontrib>Liu, Ya</creatorcontrib><creatorcontrib>Wang, Zuoguang</creatorcontrib><creatorcontrib>Li, Chuang</creatorcontrib><creatorcontrib>Jin, Yongxin</creatorcontrib><creatorcontrib>Zhao, Qiong</creatorcontrib><creatorcontrib>Wen, Shaojun</creatorcontrib><title>Recent development of risk-prediction models for incident hypertension: An updated systematic review</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Hypertension is a leading global health threat and a major cardiovascular disease. Since clinical interventions are effective in delaying the disease progression from prehypertension to hypertension, diagnostic prediction models to identify patient populations at high risk for hypertension are imperative. Both PubMed and Embase databases were searched for eligible reports of either prediction models or risk scores of hypertension. The study data were collected, including risk factors, statistic methods, characteristics of study design and participants, performance measurement, etc. From the searched literature, 26 studies reporting 48 prediction models were selected. Among them, 20 reports studied the established models using traditional risk factors, such as body mass index (BMI), age, smoking, blood pressure (BP) level, parental history of hypertension, and biochemical factors, whereas 6 reports used genetic risk score (GRS) as the prediction factor. AUC ranged from 0.64 to 0.97, and C-statistic ranged from 60% to 90%. The traditional models are still the predominant risk prediction models for hypertension, but recently, more models have begun to incorporate genetic factors as part of their model predictors. However, these genetic predictors need to be well selected. The current reported models have acceptable to good discrimination and calibration ability, but whether the models can be applied in clinical practice still needs more validation and adjustment.</description><subject>Blood pressure</subject><subject>Body mass</subject><subject>Body mass index</subject><subject>Body size</subject><subject>Cardiovascular diseases</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Epidemiology</subject><subject>Genetic factors</subject><subject>Genomes</subject><subject>Global health</subject><subject>Glucose</subject><subject>Health aspects</subject><subject>Heart</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Hypertension - physiopathology</subject><subject>Identification methods</subject><subject>Influence</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Meta-analysis</subject><subject>Models, Theoretical</subject><subject>Performance measurement</subject><subject>Population</subject><subject>Prediction models</subject><subject>Public health</subject><subject>Researchers</subject><subject>Risk analysis</subject><subject>Risk Assessment</subject><subject>Risk factors</subject><subject>Smoking</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Upgrading</subject><subject>Young adults</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlo0sYLYVj8GFhYWD9uQ5qczmRtm5q0o_PvTXe6y1T2QlrakDznPcmbc5LkOUZLTHP87toNvlX1snMtLBEucpKhB8kpFpQsOEH04dH4JHkSwjVCjBacP05OiEBFRgQ9TcwVaGj71MAOatc149hVqbfh56LzYKzurWvTxhmoQ1o5n9pWWzNi230Hvoc2ROB9umrToTOqB5OGfeihUb3VqYedhd9Pk0eVqgM8m_5nyfdPH7-df1lcXH5en68uFpoL0i_KCkPJaaYYpoSx-FKU68qUTJRlhnWhQdPCaAE6fiuRC8AVI6AQx6Tkmp4lLw-6Xe2CnAwKEguW5yzawyOxPhDGqWvZedsov5dOWXkz4fxGKh83XoNEOscoo6UoRZ4pUqmyzA0UBrjhLKvGbB-mbEPZgBlt9Kqeic5XWruVG7eTjHOCcxEF3kwC3v0aIPSysUFDXasW3HCz74JRxjIc0Vf_oPefbqI2Kh7AtpWLefUoKlcMk-gmwSO1vIeKj4HG6lhNlY3zs4C3s4DI9PCn36ghBLn-evX_7OWPOfv6iN2CqvttcPUwVlyYg9kB1N6F4KG6MxkjOTbDrRtybAY5NUMMe3F8QXdBt9VP_wKwbQZy</recordid><startdate>20171030</startdate><enddate>20171030</enddate><creator>Sun, Dongdong</creator><creator>Liu, Jielin</creator><creator>Xiao, Lei</creator><creator>Liu, Ya</creator><creator>Wang, Zuoguang</creator><creator>Li, Chuang</creator><creator>Jin, Yongxin</creator><creator>Zhao, Qiong</creator><creator>Wen, Shaojun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5839-9518</orcidid></search><sort><creationdate>20171030</creationdate><title>Recent development of risk-prediction models for incident hypertension: An updated systematic review</title><author>Sun, Dongdong ; Liu, Jielin ; Xiao, Lei ; Liu, Ya ; Wang, Zuoguang ; Li, Chuang ; Jin, Yongxin ; Zhao, Qiong ; Wen, Shaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-bf1eb634a513255255307cfdb59bb41c8cec38dc9ec8dcf979e1f52ea0612b6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Blood pressure</topic><topic>Body mass</topic><topic>Body mass index</topic><topic>Body size</topic><topic>Cardiovascular diseases</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Epidemiology</topic><topic>Genetic factors</topic><topic>Genomes</topic><topic>Global health</topic><topic>Glucose</topic><topic>Health aspects</topic><topic>Heart</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Hypertension - physiopathology</topic><topic>Identification methods</topic><topic>Influence</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Meta-analysis</topic><topic>Models, Theoretical</topic><topic>Performance measurement</topic><topic>Population</topic><topic>Prediction models</topic><topic>Public health</topic><topic>Researchers</topic><topic>Risk analysis</topic><topic>Risk Assessment</topic><topic>Risk factors</topic><topic>Smoking</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Upgrading</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Dongdong</creatorcontrib><creatorcontrib>Liu, Jielin</creatorcontrib><creatorcontrib>Xiao, Lei</creatorcontrib><creatorcontrib>Liu, Ya</creatorcontrib><creatorcontrib>Wang, Zuoguang</creatorcontrib><creatorcontrib>Li, Chuang</creatorcontrib><creatorcontrib>Jin, Yongxin</creatorcontrib><creatorcontrib>Zhao, Qiong</creatorcontrib><creatorcontrib>Wen, Shaojun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Dongdong</au><au>Liu, Jielin</au><au>Xiao, Lei</au><au>Liu, Ya</au><au>Wang, Zuoguang</au><au>Li, Chuang</au><au>Jin, Yongxin</au><au>Zhao, Qiong</au><au>Wen, Shaojun</au><au>Shimosawa, Tatsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent development of risk-prediction models for incident hypertension: An updated systematic review</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-10-30</date><risdate>2017</risdate><volume>12</volume><issue>10</issue><spage>e0187240</spage><epage>e0187240</epage><pages>e0187240-e0187240</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Hypertension is a leading global health threat and a major cardiovascular disease. Since clinical interventions are effective in delaying the disease progression from prehypertension to hypertension, diagnostic prediction models to identify patient populations at high risk for hypertension are imperative. Both PubMed and Embase databases were searched for eligible reports of either prediction models or risk scores of hypertension. The study data were collected, including risk factors, statistic methods, characteristics of study design and participants, performance measurement, etc. From the searched literature, 26 studies reporting 48 prediction models were selected. Among them, 20 reports studied the established models using traditional risk factors, such as body mass index (BMI), age, smoking, blood pressure (BP) level, parental history of hypertension, and biochemical factors, whereas 6 reports used genetic risk score (GRS) as the prediction factor. AUC ranged from 0.64 to 0.97, and C-statistic ranged from 60% to 90%. The traditional models are still the predominant risk prediction models for hypertension, but recently, more models have begun to incorporate genetic factors as part of their model predictors. However, these genetic predictors need to be well selected. The current reported models have acceptable to good discrimination and calibration ability, but whether the models can be applied in clinical practice still needs more validation and adjustment.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29084293</pmid><doi>10.1371/journal.pone.0187240</doi><tpages>e0187240</tpages><orcidid>https://orcid.org/0000-0001-5839-9518</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-10, Vol.12 (10), p.e0187240-e0187240
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1957752406
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Blood pressure
Body mass
Body mass index
Body size
Cardiovascular diseases
Diagnosis
Diagnostic systems
Epidemiology
Genetic factors
Genomes
Global health
Glucose
Health aspects
Heart
Hospitals
Humans
Hypertension
Hypertension - physiopathology
Identification methods
Influence
Mathematical models
Medicine
Meta-analysis
Models, Theoretical
Performance measurement
Population
Prediction models
Public health
Researchers
Risk analysis
Risk Assessment
Risk factors
Smoking
Statistical analysis
Statistical methods
Studies
Upgrading
Young adults
title Recent development of risk-prediction models for incident hypertension: An updated systematic review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20development%20of%20risk-prediction%20models%20for%20incident%20hypertension:%20An%20updated%20systematic%20review&rft.jtitle=PloS%20one&rft.au=Sun,%20Dongdong&rft.date=2017-10-30&rft.volume=12&rft.issue=10&rft.spage=e0187240&rft.epage=e0187240&rft.pages=e0187240-e0187240&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0187240&rft_dat=%3Cgale_plos_%3EA512307216%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1957752406&rft_id=info:pmid/29084293&rft_galeid=A512307216&rft_doaj_id=oai_doaj_org_article_0c71043b9b974a2fabb7de8de6d654fc&rfr_iscdi=true