A medical imaging analysis system for trigger finger using an adaptive texture-based active shape model (ATASM) in ultrasound images

Trigger finger has become a prevalent disease that greatly affects occupational activity and daily life. Ultrasound imaging is commonly used for the clinical diagnosis of trigger finger severity. Due to image property variations, traditional methods cannot effectively segment the finger joint's...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-10, Vol.12 (10), p.e0187042-e0187042
Hauptverfasser: Chuang, Bo-I, Kuo, Li-Chieh, Yang, Tai-Hua, Su, Fong-Chin, Jou, I-Ming, Lin, Wei-Jr, Sun, Yung-Nien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0187042
container_issue 10
container_start_page e0187042
container_title PloS one
container_volume 12
creator Chuang, Bo-I
Kuo, Li-Chieh
Yang, Tai-Hua
Su, Fong-Chin
Jou, I-Ming
Lin, Wei-Jr
Sun, Yung-Nien
description Trigger finger has become a prevalent disease that greatly affects occupational activity and daily life. Ultrasound imaging is commonly used for the clinical diagnosis of trigger finger severity. Due to image property variations, traditional methods cannot effectively segment the finger joint's tendon structure. In this study, an adaptive texture-based active shape model method is used for segmenting the tendon and synovial sheath. Adapted weights are applied in the segmentation process to adjust the contribution of energy terms depending on image characteristics at different positions. The pathology is then determined according to the wavelet and co-occurrence texture features of the segmented tendon area. In the experiments, the segmentation results have fewer errors, with respect to the ground truth, than contours drawn by regular users. The mean values of the absolute segmentation difference of the tendon and synovial sheath are 3.14 and 4.54 pixels, respectively. The average accuracy of pathological determination is 87.14%. The segmentation results are all acceptable in data of both clear and fuzzy boundary cases in 74 images. And the symptom classifications of 42 cases are also a good reference for diagnosis according to the expert clinicians' opinions.
doi_str_mv 10.1371/journal.pone.0187042
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1956479265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A511732637</galeid><doaj_id>oai_doaj_org_article_d7b78eef222d47348025dd8740962fe5</doaj_id><sourcerecordid>A511732637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5082-faffb1f11ead26d1971b8abc3d1d347e3377648369ff13bac6ae46d448a5765a3</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QGCJSznsEn_ETi6VVhUflYo4UM7WJB6nXiXxYicVe-eH491Nqy6qfLA1fu_NvNHLsrc0X1Ku6Ke1n8IA3XLjB1zmtFS5YM-yU1pxtpAs588fvU-yVzGu87zgpZQvsxNW5Uoprk6zvyvSo3ENdMT10LqhJZBUt9FFErdxxJ5YH8gYXNtiIDYB0jXFA5CAgc3o7pCM-GecAi5qiGgINPtivIUNkt4b7Mj56mb18_tH4gYydWOA6KfB7HtifJ29sNBFfDPfZ9mvL59vLr8trn98vbpcXS-aIi_ZwoK1NbWUIhgmDa0UrUuoG26o4UIh50pJUXJZWUt5DY0EFNIIUUKhZAH8LHt_0N10Pup5gVHTqpBCVUwWCXF1QBgPa70Jab6w1R6c3hd8aDWE0TUdaqNqVSJaxpgRiosyZ4UxpRJ5JZnFndbF3G2q044bHJLt7kj0-Gdwt7r1d7qQRZWcJIHzWSD43xPGUfcuNth1MKCf9nMrUVaC8QT98B_0aXczqoVkwA3Wp77NTlSvCkoVZ5KrhFo-gUrHYO-alDbrUv2IIA6EJvgYA9oHjzTXu6zeD6N3WdVzVhPt3eP9PJDuw8n_AeaN538</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956479265</pqid></control><display><type>article</type><title>A medical imaging analysis system for trigger finger using an adaptive texture-based active shape model (ATASM) in ultrasound images</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chuang, Bo-I ; Kuo, Li-Chieh ; Yang, Tai-Hua ; Su, Fong-Chin ; Jou, I-Ming ; Lin, Wei-Jr ; Sun, Yung-Nien</creator><contributor>Wang, Yuanquan</contributor><creatorcontrib>Chuang, Bo-I ; Kuo, Li-Chieh ; Yang, Tai-Hua ; Su, Fong-Chin ; Jou, I-Ming ; Lin, Wei-Jr ; Sun, Yung-Nien ; Wang, Yuanquan</creatorcontrib><description>Trigger finger has become a prevalent disease that greatly affects occupational activity and daily life. Ultrasound imaging is commonly used for the clinical diagnosis of trigger finger severity. Due to image property variations, traditional methods cannot effectively segment the finger joint's tendon structure. In this study, an adaptive texture-based active shape model method is used for segmenting the tendon and synovial sheath. Adapted weights are applied in the segmentation process to adjust the contribution of energy terms depending on image characteristics at different positions. The pathology is then determined according to the wavelet and co-occurrence texture features of the segmented tendon area. In the experiments, the segmentation results have fewer errors, with respect to the ground truth, than contours drawn by regular users. The mean values of the absolute segmentation difference of the tendon and synovial sheath are 3.14 and 4.54 pixels, respectively. The average accuracy of pathological determination is 87.14%. The segmentation results are all acceptable in data of both clear and fuzzy boundary cases in 74 images. And the symptom classifications of 42 cases are also a good reference for diagnosis according to the expert clinicians' opinions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0187042</identifier><identifier>PMID: 29077737</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptive systems ; Artificial intelligence ; Atherosclerosis ; Bioengineering ; Biomedical engineering ; Care and treatment ; Classification ; Computer science ; Diabetic neuropathy ; Diagnosis ; Diagnostic ultrasonography ; Engineering ; Finger ; Ground truth ; Humans ; Image processing ; Image retrieval ; Image segmentation ; International conferences ; Medical imaging ; Models, Anatomic ; Principal components analysis ; Remote sensing ; Studies ; Tenosynovitis ; Texture ; Trigger Finger Disorder - diagnostic imaging ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasound ; Wavelet transforms</subject><ispartof>PloS one, 2017-10, Vol.12 (10), p.e0187042-e0187042</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Chuang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Chuang et al 2017 Chuang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5082-faffb1f11ead26d1971b8abc3d1d347e3377648369ff13bac6ae46d448a5765a3</citedby><cites>FETCH-LOGICAL-c5082-faffb1f11ead26d1971b8abc3d1d347e3377648369ff13bac6ae46d448a5765a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659776/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659776/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29077737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Yuanquan</contributor><creatorcontrib>Chuang, Bo-I</creatorcontrib><creatorcontrib>Kuo, Li-Chieh</creatorcontrib><creatorcontrib>Yang, Tai-Hua</creatorcontrib><creatorcontrib>Su, Fong-Chin</creatorcontrib><creatorcontrib>Jou, I-Ming</creatorcontrib><creatorcontrib>Lin, Wei-Jr</creatorcontrib><creatorcontrib>Sun, Yung-Nien</creatorcontrib><title>A medical imaging analysis system for trigger finger using an adaptive texture-based active shape model (ATASM) in ultrasound images</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Trigger finger has become a prevalent disease that greatly affects occupational activity and daily life. Ultrasound imaging is commonly used for the clinical diagnosis of trigger finger severity. Due to image property variations, traditional methods cannot effectively segment the finger joint's tendon structure. In this study, an adaptive texture-based active shape model method is used for segmenting the tendon and synovial sheath. Adapted weights are applied in the segmentation process to adjust the contribution of energy terms depending on image characteristics at different positions. The pathology is then determined according to the wavelet and co-occurrence texture features of the segmented tendon area. In the experiments, the segmentation results have fewer errors, with respect to the ground truth, than contours drawn by regular users. The mean values of the absolute segmentation difference of the tendon and synovial sheath are 3.14 and 4.54 pixels, respectively. The average accuracy of pathological determination is 87.14%. The segmentation results are all acceptable in data of both clear and fuzzy boundary cases in 74 images. And the symptom classifications of 42 cases are also a good reference for diagnosis according to the expert clinicians' opinions.</description><subject>Adaptive systems</subject><subject>Artificial intelligence</subject><subject>Atherosclerosis</subject><subject>Bioengineering</subject><subject>Biomedical engineering</subject><subject>Care and treatment</subject><subject>Classification</subject><subject>Computer science</subject><subject>Diabetic neuropathy</subject><subject>Diagnosis</subject><subject>Diagnostic ultrasonography</subject><subject>Engineering</subject><subject>Finger</subject><subject>Ground truth</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image retrieval</subject><subject>Image segmentation</subject><subject>International conferences</subject><subject>Medical imaging</subject><subject>Models, Anatomic</subject><subject>Principal components analysis</subject><subject>Remote sensing</subject><subject>Studies</subject><subject>Tenosynovitis</subject><subject>Texture</subject><subject>Trigger Finger Disorder - diagnostic imaging</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>Wavelet transforms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QGCJSznsEn_ETi6VVhUflYo4UM7WJB6nXiXxYicVe-eH491Nqy6qfLA1fu_NvNHLsrc0X1Ku6Ke1n8IA3XLjB1zmtFS5YM-yU1pxtpAs588fvU-yVzGu87zgpZQvsxNW5Uoprk6zvyvSo3ENdMT10LqhJZBUt9FFErdxxJ5YH8gYXNtiIDYB0jXFA5CAgc3o7pCM-GecAi5qiGgINPtivIUNkt4b7Mj56mb18_tH4gYydWOA6KfB7HtifJ29sNBFfDPfZ9mvL59vLr8trn98vbpcXS-aIi_ZwoK1NbWUIhgmDa0UrUuoG26o4UIh50pJUXJZWUt5DY0EFNIIUUKhZAH8LHt_0N10Pup5gVHTqpBCVUwWCXF1QBgPa70Jab6w1R6c3hd8aDWE0TUdaqNqVSJaxpgRiosyZ4UxpRJ5JZnFndbF3G2q044bHJLt7kj0-Gdwt7r1d7qQRZWcJIHzWSD43xPGUfcuNth1MKCf9nMrUVaC8QT98B_0aXczqoVkwA3Wp77NTlSvCkoVZ5KrhFo-gUrHYO-alDbrUv2IIA6EJvgYA9oHjzTXu6zeD6N3WdVzVhPt3eP9PJDuw8n_AeaN538</recordid><startdate>20171027</startdate><enddate>20171027</enddate><creator>Chuang, Bo-I</creator><creator>Kuo, Li-Chieh</creator><creator>Yang, Tai-Hua</creator><creator>Su, Fong-Chin</creator><creator>Jou, I-Ming</creator><creator>Lin, Wei-Jr</creator><creator>Sun, Yung-Nien</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20171027</creationdate><title>A medical imaging analysis system for trigger finger using an adaptive texture-based active shape model (ATASM) in ultrasound images</title><author>Chuang, Bo-I ; Kuo, Li-Chieh ; Yang, Tai-Hua ; Su, Fong-Chin ; Jou, I-Ming ; Lin, Wei-Jr ; Sun, Yung-Nien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5082-faffb1f11ead26d1971b8abc3d1d347e3377648369ff13bac6ae46d448a5765a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive systems</topic><topic>Artificial intelligence</topic><topic>Atherosclerosis</topic><topic>Bioengineering</topic><topic>Biomedical engineering</topic><topic>Care and treatment</topic><topic>Classification</topic><topic>Computer science</topic><topic>Diabetic neuropathy</topic><topic>Diagnosis</topic><topic>Diagnostic ultrasonography</topic><topic>Engineering</topic><topic>Finger</topic><topic>Ground truth</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image retrieval</topic><topic>Image segmentation</topic><topic>International conferences</topic><topic>Medical imaging</topic><topic>Models, Anatomic</topic><topic>Principal components analysis</topic><topic>Remote sensing</topic><topic>Studies</topic><topic>Tenosynovitis</topic><topic>Texture</topic><topic>Trigger Finger Disorder - diagnostic imaging</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chuang, Bo-I</creatorcontrib><creatorcontrib>Kuo, Li-Chieh</creatorcontrib><creatorcontrib>Yang, Tai-Hua</creatorcontrib><creatorcontrib>Su, Fong-Chin</creatorcontrib><creatorcontrib>Jou, I-Ming</creatorcontrib><creatorcontrib>Lin, Wei-Jr</creatorcontrib><creatorcontrib>Sun, Yung-Nien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chuang, Bo-I</au><au>Kuo, Li-Chieh</au><au>Yang, Tai-Hua</au><au>Su, Fong-Chin</au><au>Jou, I-Ming</au><au>Lin, Wei-Jr</au><au>Sun, Yung-Nien</au><au>Wang, Yuanquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A medical imaging analysis system for trigger finger using an adaptive texture-based active shape model (ATASM) in ultrasound images</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-10-27</date><risdate>2017</risdate><volume>12</volume><issue>10</issue><spage>e0187042</spage><epage>e0187042</epage><pages>e0187042-e0187042</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Trigger finger has become a prevalent disease that greatly affects occupational activity and daily life. Ultrasound imaging is commonly used for the clinical diagnosis of trigger finger severity. Due to image property variations, traditional methods cannot effectively segment the finger joint's tendon structure. In this study, an adaptive texture-based active shape model method is used for segmenting the tendon and synovial sheath. Adapted weights are applied in the segmentation process to adjust the contribution of energy terms depending on image characteristics at different positions. The pathology is then determined according to the wavelet and co-occurrence texture features of the segmented tendon area. In the experiments, the segmentation results have fewer errors, with respect to the ground truth, than contours drawn by regular users. The mean values of the absolute segmentation difference of the tendon and synovial sheath are 3.14 and 4.54 pixels, respectively. The average accuracy of pathological determination is 87.14%. The segmentation results are all acceptable in data of both clear and fuzzy boundary cases in 74 images. And the symptom classifications of 42 cases are also a good reference for diagnosis according to the expert clinicians' opinions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29077737</pmid><doi>10.1371/journal.pone.0187042</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-10, Vol.12 (10), p.e0187042-e0187042
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1956479265
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adaptive systems
Artificial intelligence
Atherosclerosis
Bioengineering
Biomedical engineering
Care and treatment
Classification
Computer science
Diabetic neuropathy
Diagnosis
Diagnostic ultrasonography
Engineering
Finger
Ground truth
Humans
Image processing
Image retrieval
Image segmentation
International conferences
Medical imaging
Models, Anatomic
Principal components analysis
Remote sensing
Studies
Tenosynovitis
Texture
Trigger Finger Disorder - diagnostic imaging
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
Wavelet transforms
title A medical imaging analysis system for trigger finger using an adaptive texture-based active shape model (ATASM) in ultrasound images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20medical%20imaging%20analysis%20system%20for%20trigger%20finger%20using%20an%20adaptive%20texture-based%20active%20shape%20model%20(ATASM)%20in%20ultrasound%20images&rft.jtitle=PloS%20one&rft.au=Chuang,%20Bo-I&rft.date=2017-10-27&rft.volume=12&rft.issue=10&rft.spage=e0187042&rft.epage=e0187042&rft.pages=e0187042-e0187042&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0187042&rft_dat=%3Cgale_plos_%3EA511732637%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956479265&rft_id=info:pmid/29077737&rft_galeid=A511732637&rft_doaj_id=oai_doaj_org_article_d7b78eef222d47348025dd8740962fe5&rfr_iscdi=true