Development and validation of immune dysfunction score to predict 28-day mortality of sepsis patients

Sepsis-induced immune dysfunction ranging from cytokines storm to immunoparalysis impacts outcomes. Monitoring immune dysfunction enables better risk stratification and mortality prediction and is mandatory before widely application of immunoadjuvant therapies. We aimed to develop and validate a sco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-10, Vol.12 (10), p.e0187088-e0187088
Hauptverfasser: Fang, Wen-Feng, Douglas, Ivor S, Chen, Yu-Mu, Lin, Chiung-Yu, Kao, Hsu-Ching, Fang, Ying-Tang, Huang, Chi-Han, Chang, Ya-Ting, Huang, Kuo-Tung, Wang, Yi-His, Wang, Chin-Chou, Lin, Meng-Chih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0187088
container_issue 10
container_start_page e0187088
container_title PloS one
container_volume 12
creator Fang, Wen-Feng
Douglas, Ivor S
Chen, Yu-Mu
Lin, Chiung-Yu
Kao, Hsu-Ching
Fang, Ying-Tang
Huang, Chi-Han
Chang, Ya-Ting
Huang, Kuo-Tung
Wang, Yi-His
Wang, Chin-Chou
Lin, Meng-Chih
description Sepsis-induced immune dysfunction ranging from cytokines storm to immunoparalysis impacts outcomes. Monitoring immune dysfunction enables better risk stratification and mortality prediction and is mandatory before widely application of immunoadjuvant therapies. We aimed to develop and validate a scoring system according to patients' immune dysfunction status for 28-day mortality prediction. A prospective observational study from a cohort of adult sepsis patients admitted to ICU between August 2013 and June 2016 at Kaohsiung Chang Gung Memorial Hospital in Taiwan. We evaluated immune dysfunction status through measurement of baseline plasma Cytokine levels, Monocyte human leukocyte-DR expression by flow cytometry, and stimulated immune response using post LPS stimulated cytokine elevation ratio. An immune dysfunction score was created for 28-day mortality prediction and was validated. A total of 151 patients were enrolled. Data of the first consecutive 106 septic patients comprised the training cohort, and of other 45 patients comprised the validation cohort. Among the 106 patients, 21 died and 85 were still alive on day 28 after ICU admission. (mortality rate, 19.8%). Independent predictive factors revealed via multivariate logistic regression analysis included segmented neutrophil-to-monocyte ratio, granulocyte-colony stimulating factor, interleukin-10, and monocyte human leukocyte antigen-antigen D-related levels, all of which were selected to construct the score, which predicted 28-day mortality with area under the curve of 0.853 and 0.789 in the training and validation cohorts, respectively. The immune dysfunction scoring system developed here included plasma granulocyte-colony stimulating factor level, interleukin-10 level, serum segmented neutrophil-to-monocyte ratio, and monocyte human leukocyte antigen-antigen D-related expression appears valid and reproducible for predicting 28-day mortality.
doi_str_mv 10.1371/journal.pone.0187088
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1956439497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A511535384</galeid><doaj_id>oai_doaj_org_article_f6d9d3589e0547148ea89c2887c3333c</doaj_id><sourcerecordid>A511535384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c6c6508501591638b53c61675b0616ed08c5cdf5d253be1bd92d617926e7c4fc3</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BshsHYLpJJliVLN4PSfQUKhX3dCkU6ThRsy5XksPz7yYlbktGL2WCJ4-d9j3V8Tpa9xGiOSYU_bNzgO9XMe9fBHGFeIc4fZedYkGLGCkQeH-3PsmchbBCihDP2NDsrBKpIwYrzDD7BFhrXt9DFXHUm36rGGhWt63JX57Zthw5yswv10Ol9NGjnIY8u7z0Yq2Ne8JlRu7x1PiZt3I26AH2wIe-TUTIOz7MntWoCvJjWi-zXl88_r77Nrm--Lq4ur2eaiSKmp2YUcYowFZgRvqREM8wqukRpAYO4ptrU1BSULAEvjSgMw5UoGFS6rDW5yF4ffPvGBTlVKEgsKCuJKEWViMWBME5tZO9tq_xOOmXlPuD8SiofrW5A1swIQygXgGhZ4ZKD4kIXnFeapGvM9nHKNixbMDqd1KvmxPT0TWfXcuW2kjLKMWXJ4N1k4N3tACHK1gYNTaM6cMP-u6uScVrihL75B334dBO1UukAtqtdyqtHU3lJMaYkNUCZqPkDVLoNtFandqptip8I3p8IEhPhT1ypIQS5-PH9_9mb36fs2yN2DaqJ6-CaYeyzcAqWB1B7F4KH-r7IGMlxGu6qIcdpkNM0JNmr4x90L7prf_IX4t4ERA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956439497</pqid></control><display><type>article</type><title>Development and validation of immune dysfunction score to predict 28-day mortality of sepsis patients</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Fang, Wen-Feng ; Douglas, Ivor S ; Chen, Yu-Mu ; Lin, Chiung-Yu ; Kao, Hsu-Ching ; Fang, Ying-Tang ; Huang, Chi-Han ; Chang, Ya-Ting ; Huang, Kuo-Tung ; Wang, Yi-His ; Wang, Chin-Chou ; Lin, Meng-Chih</creator><creatorcontrib>Fang, Wen-Feng ; Douglas, Ivor S ; Chen, Yu-Mu ; Lin, Chiung-Yu ; Kao, Hsu-Ching ; Fang, Ying-Tang ; Huang, Chi-Han ; Chang, Ya-Ting ; Huang, Kuo-Tung ; Wang, Yi-His ; Wang, Chin-Chou ; Lin, Meng-Chih</creatorcontrib><description>Sepsis-induced immune dysfunction ranging from cytokines storm to immunoparalysis impacts outcomes. Monitoring immune dysfunction enables better risk stratification and mortality prediction and is mandatory before widely application of immunoadjuvant therapies. We aimed to develop and validate a scoring system according to patients' immune dysfunction status for 28-day mortality prediction. A prospective observational study from a cohort of adult sepsis patients admitted to ICU between August 2013 and June 2016 at Kaohsiung Chang Gung Memorial Hospital in Taiwan. We evaluated immune dysfunction status through measurement of baseline plasma Cytokine levels, Monocyte human leukocyte-DR expression by flow cytometry, and stimulated immune response using post LPS stimulated cytokine elevation ratio. An immune dysfunction score was created for 28-day mortality prediction and was validated. A total of 151 patients were enrolled. Data of the first consecutive 106 septic patients comprised the training cohort, and of other 45 patients comprised the validation cohort. Among the 106 patients, 21 died and 85 were still alive on day 28 after ICU admission. (mortality rate, 19.8%). Independent predictive factors revealed via multivariate logistic regression analysis included segmented neutrophil-to-monocyte ratio, granulocyte-colony stimulating factor, interleukin-10, and monocyte human leukocyte antigen-antigen D-related levels, all of which were selected to construct the score, which predicted 28-day mortality with area under the curve of 0.853 and 0.789 in the training and validation cohorts, respectively. The immune dysfunction scoring system developed here included plasma granulocyte-colony stimulating factor level, interleukin-10 level, serum segmented neutrophil-to-monocyte ratio, and monocyte human leukocyte antigen-antigen D-related expression appears valid and reproducible for predicting 28-day mortality.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0187088</identifier><identifier>PMID: 29073262</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Cohort Studies ; Colonies ; Colony-stimulating factor ; Critical care ; Cytokines ; Cytokines - blood ; Cytometry ; Data processing ; Demographic aspects ; Development and progression ; Flow Cytometry ; Granulocytes ; Histocompatibility antigen HLA ; Hospitals ; Humans ; Immune response ; Immune system ; Immunology ; Intensive care ; Interleukin 10 ; Internal medicine ; Leukocytes (granulocytic) ; Lipopolysaccharides ; Lipopolysaccharides - pharmacology ; Medicine ; Medicine and Health Sciences ; Monocytes ; Mortality ; Neutrophils ; Nosocomial infections ; Patients ; Physicians ; Physiological aspects ; Predictions ; Prognosis ; Prospective Studies ; Regression analysis ; Sepsis ; Sepsis - immunology ; Sepsis - mortality ; Training</subject><ispartof>PloS one, 2017-10, Vol.12 (10), p.e0187088-e0187088</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Fang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Fang et al 2017 Fang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c6c6508501591638b53c61675b0616ed08c5cdf5d253be1bd92d617926e7c4fc3</citedby><cites>FETCH-LOGICAL-c692t-c6c6508501591638b53c61675b0616ed08c5cdf5d253be1bd92d617926e7c4fc3</cites><orcidid>0000-0001-7777-9356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658156/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5658156/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29073262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Wen-Feng</creatorcontrib><creatorcontrib>Douglas, Ivor S</creatorcontrib><creatorcontrib>Chen, Yu-Mu</creatorcontrib><creatorcontrib>Lin, Chiung-Yu</creatorcontrib><creatorcontrib>Kao, Hsu-Ching</creatorcontrib><creatorcontrib>Fang, Ying-Tang</creatorcontrib><creatorcontrib>Huang, Chi-Han</creatorcontrib><creatorcontrib>Chang, Ya-Ting</creatorcontrib><creatorcontrib>Huang, Kuo-Tung</creatorcontrib><creatorcontrib>Wang, Yi-His</creatorcontrib><creatorcontrib>Wang, Chin-Chou</creatorcontrib><creatorcontrib>Lin, Meng-Chih</creatorcontrib><title>Development and validation of immune dysfunction score to predict 28-day mortality of sepsis patients</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Sepsis-induced immune dysfunction ranging from cytokines storm to immunoparalysis impacts outcomes. Monitoring immune dysfunction enables better risk stratification and mortality prediction and is mandatory before widely application of immunoadjuvant therapies. We aimed to develop and validate a scoring system according to patients' immune dysfunction status for 28-day mortality prediction. A prospective observational study from a cohort of adult sepsis patients admitted to ICU between August 2013 and June 2016 at Kaohsiung Chang Gung Memorial Hospital in Taiwan. We evaluated immune dysfunction status through measurement of baseline plasma Cytokine levels, Monocyte human leukocyte-DR expression by flow cytometry, and stimulated immune response using post LPS stimulated cytokine elevation ratio. An immune dysfunction score was created for 28-day mortality prediction and was validated. A total of 151 patients were enrolled. Data of the first consecutive 106 septic patients comprised the training cohort, and of other 45 patients comprised the validation cohort. Among the 106 patients, 21 died and 85 were still alive on day 28 after ICU admission. (mortality rate, 19.8%). Independent predictive factors revealed via multivariate logistic regression analysis included segmented neutrophil-to-monocyte ratio, granulocyte-colony stimulating factor, interleukin-10, and monocyte human leukocyte antigen-antigen D-related levels, all of which were selected to construct the score, which predicted 28-day mortality with area under the curve of 0.853 and 0.789 in the training and validation cohorts, respectively. The immune dysfunction scoring system developed here included plasma granulocyte-colony stimulating factor level, interleukin-10 level, serum segmented neutrophil-to-monocyte ratio, and monocyte human leukocyte antigen-antigen D-related expression appears valid and reproducible for predicting 28-day mortality.</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Cohort Studies</subject><subject>Colonies</subject><subject>Colony-stimulating factor</subject><subject>Critical care</subject><subject>Cytokines</subject><subject>Cytokines - blood</subject><subject>Cytometry</subject><subject>Data processing</subject><subject>Demographic aspects</subject><subject>Development and progression</subject><subject>Flow Cytometry</subject><subject>Granulocytes</subject><subject>Histocompatibility antigen HLA</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunology</subject><subject>Intensive care</subject><subject>Interleukin 10</subject><subject>Internal medicine</subject><subject>Leukocytes (granulocytic)</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Monocytes</subject><subject>Mortality</subject><subject>Neutrophils</subject><subject>Nosocomial infections</subject><subject>Patients</subject><subject>Physicians</subject><subject>Physiological aspects</subject><subject>Predictions</subject><subject>Prognosis</subject><subject>Prospective Studies</subject><subject>Regression analysis</subject><subject>Sepsis</subject><subject>Sepsis - immunology</subject><subject>Sepsis - mortality</subject><subject>Training</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BshsHYLpJJliVLN4PSfQUKhX3dCkU6ThRsy5XksPz7yYlbktGL2WCJ4-d9j3V8Tpa9xGiOSYU_bNzgO9XMe9fBHGFeIc4fZedYkGLGCkQeH-3PsmchbBCihDP2NDsrBKpIwYrzDD7BFhrXt9DFXHUm36rGGhWt63JX57Zthw5yswv10Ol9NGjnIY8u7z0Yq2Ne8JlRu7x1PiZt3I26AH2wIe-TUTIOz7MntWoCvJjWi-zXl88_r77Nrm--Lq4ur2eaiSKmp2YUcYowFZgRvqREM8wqukRpAYO4ptrU1BSULAEvjSgMw5UoGFS6rDW5yF4ffPvGBTlVKEgsKCuJKEWViMWBME5tZO9tq_xOOmXlPuD8SiofrW5A1swIQygXgGhZ4ZKD4kIXnFeapGvM9nHKNixbMDqd1KvmxPT0TWfXcuW2kjLKMWXJ4N1k4N3tACHK1gYNTaM6cMP-u6uScVrihL75B334dBO1UukAtqtdyqtHU3lJMaYkNUCZqPkDVLoNtFandqptip8I3p8IEhPhT1ypIQS5-PH9_9mb36fs2yN2DaqJ6-CaYeyzcAqWB1B7F4KH-r7IGMlxGu6qIcdpkNM0JNmr4x90L7prf_IX4t4ERA</recordid><startdate>20171026</startdate><enddate>20171026</enddate><creator>Fang, Wen-Feng</creator><creator>Douglas, Ivor S</creator><creator>Chen, Yu-Mu</creator><creator>Lin, Chiung-Yu</creator><creator>Kao, Hsu-Ching</creator><creator>Fang, Ying-Tang</creator><creator>Huang, Chi-Han</creator><creator>Chang, Ya-Ting</creator><creator>Huang, Kuo-Tung</creator><creator>Wang, Yi-His</creator><creator>Wang, Chin-Chou</creator><creator>Lin, Meng-Chih</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7777-9356</orcidid></search><sort><creationdate>20171026</creationdate><title>Development and validation of immune dysfunction score to predict 28-day mortality of sepsis patients</title><author>Fang, Wen-Feng ; Douglas, Ivor S ; Chen, Yu-Mu ; Lin, Chiung-Yu ; Kao, Hsu-Ching ; Fang, Ying-Tang ; Huang, Chi-Han ; Chang, Ya-Ting ; Huang, Kuo-Tung ; Wang, Yi-His ; Wang, Chin-Chou ; Lin, Meng-Chih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c6c6508501591638b53c61675b0616ed08c5cdf5d253be1bd92d617926e7c4fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Cohort Studies</topic><topic>Colonies</topic><topic>Colony-stimulating factor</topic><topic>Critical care</topic><topic>Cytokines</topic><topic>Cytokines - blood</topic><topic>Cytometry</topic><topic>Data processing</topic><topic>Demographic aspects</topic><topic>Development and progression</topic><topic>Flow Cytometry</topic><topic>Granulocytes</topic><topic>Histocompatibility antigen HLA</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunology</topic><topic>Intensive care</topic><topic>Interleukin 10</topic><topic>Internal medicine</topic><topic>Leukocytes (granulocytic)</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Monocytes</topic><topic>Mortality</topic><topic>Neutrophils</topic><topic>Nosocomial infections</topic><topic>Patients</topic><topic>Physicians</topic><topic>Physiological aspects</topic><topic>Predictions</topic><topic>Prognosis</topic><topic>Prospective Studies</topic><topic>Regression analysis</topic><topic>Sepsis</topic><topic>Sepsis - immunology</topic><topic>Sepsis - mortality</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Wen-Feng</creatorcontrib><creatorcontrib>Douglas, Ivor S</creatorcontrib><creatorcontrib>Chen, Yu-Mu</creatorcontrib><creatorcontrib>Lin, Chiung-Yu</creatorcontrib><creatorcontrib>Kao, Hsu-Ching</creatorcontrib><creatorcontrib>Fang, Ying-Tang</creatorcontrib><creatorcontrib>Huang, Chi-Han</creatorcontrib><creatorcontrib>Chang, Ya-Ting</creatorcontrib><creatorcontrib>Huang, Kuo-Tung</creatorcontrib><creatorcontrib>Wang, Yi-His</creatorcontrib><creatorcontrib>Wang, Chin-Chou</creatorcontrib><creatorcontrib>Lin, Meng-Chih</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Wen-Feng</au><au>Douglas, Ivor S</au><au>Chen, Yu-Mu</au><au>Lin, Chiung-Yu</au><au>Kao, Hsu-Ching</au><au>Fang, Ying-Tang</au><au>Huang, Chi-Han</au><au>Chang, Ya-Ting</au><au>Huang, Kuo-Tung</au><au>Wang, Yi-His</au><au>Wang, Chin-Chou</au><au>Lin, Meng-Chih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and validation of immune dysfunction score to predict 28-day mortality of sepsis patients</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-10-26</date><risdate>2017</risdate><volume>12</volume><issue>10</issue><spage>e0187088</spage><epage>e0187088</epage><pages>e0187088-e0187088</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Sepsis-induced immune dysfunction ranging from cytokines storm to immunoparalysis impacts outcomes. Monitoring immune dysfunction enables better risk stratification and mortality prediction and is mandatory before widely application of immunoadjuvant therapies. We aimed to develop and validate a scoring system according to patients' immune dysfunction status for 28-day mortality prediction. A prospective observational study from a cohort of adult sepsis patients admitted to ICU between August 2013 and June 2016 at Kaohsiung Chang Gung Memorial Hospital in Taiwan. We evaluated immune dysfunction status through measurement of baseline plasma Cytokine levels, Monocyte human leukocyte-DR expression by flow cytometry, and stimulated immune response using post LPS stimulated cytokine elevation ratio. An immune dysfunction score was created for 28-day mortality prediction and was validated. A total of 151 patients were enrolled. Data of the first consecutive 106 septic patients comprised the training cohort, and of other 45 patients comprised the validation cohort. Among the 106 patients, 21 died and 85 were still alive on day 28 after ICU admission. (mortality rate, 19.8%). Independent predictive factors revealed via multivariate logistic regression analysis included segmented neutrophil-to-monocyte ratio, granulocyte-colony stimulating factor, interleukin-10, and monocyte human leukocyte antigen-antigen D-related levels, all of which were selected to construct the score, which predicted 28-day mortality with area under the curve of 0.853 and 0.789 in the training and validation cohorts, respectively. The immune dysfunction scoring system developed here included plasma granulocyte-colony stimulating factor level, interleukin-10 level, serum segmented neutrophil-to-monocyte ratio, and monocyte human leukocyte antigen-antigen D-related expression appears valid and reproducible for predicting 28-day mortality.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29073262</pmid><doi>10.1371/journal.pone.0187088</doi><tpages>e0187088</tpages><orcidid>https://orcid.org/0000-0001-7777-9356</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-10, Vol.12 (10), p.e0187088-e0187088
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1956439497
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Analysis
Biology and Life Sciences
Cohort Studies
Colonies
Colony-stimulating factor
Critical care
Cytokines
Cytokines - blood
Cytometry
Data processing
Demographic aspects
Development and progression
Flow Cytometry
Granulocytes
Histocompatibility antigen HLA
Hospitals
Humans
Immune response
Immune system
Immunology
Intensive care
Interleukin 10
Internal medicine
Leukocytes (granulocytic)
Lipopolysaccharides
Lipopolysaccharides - pharmacology
Medicine
Medicine and Health Sciences
Monocytes
Mortality
Neutrophils
Nosocomial infections
Patients
Physicians
Physiological aspects
Predictions
Prognosis
Prospective Studies
Regression analysis
Sepsis
Sepsis - immunology
Sepsis - mortality
Training
title Development and validation of immune dysfunction score to predict 28-day mortality of sepsis patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20validation%20of%20immune%20dysfunction%20score%20to%20predict%2028-day%20mortality%20of%20sepsis%20patients&rft.jtitle=PloS%20one&rft.au=Fang,%20Wen-Feng&rft.date=2017-10-26&rft.volume=12&rft.issue=10&rft.spage=e0187088&rft.epage=e0187088&rft.pages=e0187088-e0187088&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0187088&rft_dat=%3Cgale_plos_%3EA511535384%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956439497&rft_id=info:pmid/29073262&rft_galeid=A511535384&rft_doaj_id=oai_doaj_org_article_f6d9d3589e0547148ea89c2887c3333c&rfr_iscdi=true