Hydrophobic residues are critical for the helix-forming, hemolytic and bactericidal activities of amphipathic antimicrobial peptide TP4
Antimicrobial peptides are important components of the host innate defense mechanism against invading pathogens, especially for drug-resistant bacteria. In addition to bactericidal activity, the 25 residue peptide TP4 isolated from Nile tilapia also stimulates cell proliferation and regulates the in...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-10, Vol.12 (10), p.e0186442 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e0186442 |
container_title | PloS one |
container_volume | 12 |
creator | Chang, Ting-Wei Wei, Shu-Yi Wang, Shih-Han Wei, Hung-Mu Wang, Yu-June Wang, Chiu-Feng Chen, Chinpan Liao, You-Di |
description | Antimicrobial peptides are important components of the host innate defense mechanism against invading pathogens, especially for drug-resistant bacteria. In addition to bactericidal activity, the 25 residue peptide TP4 isolated from Nile tilapia also stimulates cell proliferation and regulates the innate immune system in mice. In this report, TP4 hyperpolarized and depolarized the membrane potential of Pseudomonas aeruginosa at sub-lethal and lethal concentrations. It also inhibited and eradicated biofilm formation. The in vitro binding of TP4 to bacterial outer membrane target protein, OprI, was markedly enhanced by a membrane-like surfactant sarkosyl and lipopolysaccharide, which converted TP4 into an α-helix. The solution structure of TP4 in dodecylphosphocholine was solved by NMR analyses. It contained a typical α-helix at residues Phe10-Arg22 and a distorted helical segment at Ile6-Phe10, as well as a hydrophobic core at the N-terminus and a cationic patch at the C-terminus. Residues Ile16, Leu19 and Ile20 in the hydrophobic face of the main helix were critical for the integrity of amphipathic structure, other hydrophobic residues played important roles in hemolytic and bactericidal activities. A model for the assembly of helical TP4 embedded in sarkosyl vesicle is proposed. This study may provide valuable insight for engineering AMPs to have potent bactericidal activity but low hemolytic activity. |
doi_str_mv | 10.1371/journal.pone.0186442 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1952058887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A510023431</galeid><doaj_id>oai_doaj_org_article_e0a3ed83a5284412b08c17d995a0eced</doaj_id><sourcerecordid>A510023431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-481af8ed43917a462b8e3e1b3b1f648e6bd3e781ff70fac69affbd2b872b317a3</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9EBQRDcNV8zk7kRSlG7UKho9TZkJic7WWYmY5It3V_g3_a0uy27oCC5yNfzvklOzsmyl5TMKa_oh5Vfh1H388mPMCdUlkKwR9kxrTmblYzwx3vjo-xZjCtCCi7L8ml2xGoiCKuL4-z3-cYEP3W-cW0eIDqzhpjrAHkbXHKt7nPrQ546yDvo3c0MZ4Mbl-9xOvh-g0iuR5M3uk0QXOsMKnDsrlGNTt7mepg6N-nU3aHJDa4NeBxyE0zJGcivvorn2ROr-wgvdv1J9uPzp6uz89nF5ZfF2enFrC1rlmZCUm0lGMFrWmlRskYCB9rwhtpSSCgbw6GS1NqKWI0abW1jkKpYw1HBT7LXW9-p91HtYhgVrQtGCillhcRiSxivV2oKbtBho7x26m7Bh6XSAZ_dgwKiORjJdcGkEJQ1RLa0MnVdaAItGPT6uDtt3QxgWhhT0P2B6eHO6Dq19NeqKEVBmUSDNzuD4H_hz6R_XHlHLTXeyo3Wo1k7uNiq04ISwrjgFKn5XyhsBvBLMIusw_UDwbsDATIJbtJSr2NUi-_f_p-9_HnIvt1jO9B96qLv18n5MR6CYgtiwsQYwD5EjhJ1WwT30VC3RaB2RYCyV_tRfxDdZz3_A6Z2BNE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952058887</pqid></control><display><type>article</type><title>Hydrophobic residues are critical for the helix-forming, hemolytic and bactericidal activities of amphipathic antimicrobial peptide TP4</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chang, Ting-Wei ; Wei, Shu-Yi ; Wang, Shih-Han ; Wei, Hung-Mu ; Wang, Yu-June ; Wang, Chiu-Feng ; Chen, Chinpan ; Liao, You-Di</creator><contributor>Massiah, Michael</contributor><creatorcontrib>Chang, Ting-Wei ; Wei, Shu-Yi ; Wang, Shih-Han ; Wei, Hung-Mu ; Wang, Yu-June ; Wang, Chiu-Feng ; Chen, Chinpan ; Liao, You-Di ; Massiah, Michael</creatorcontrib><description>Antimicrobial peptides are important components of the host innate defense mechanism against invading pathogens, especially for drug-resistant bacteria. In addition to bactericidal activity, the 25 residue peptide TP4 isolated from Nile tilapia also stimulates cell proliferation and regulates the innate immune system in mice. In this report, TP4 hyperpolarized and depolarized the membrane potential of Pseudomonas aeruginosa at sub-lethal and lethal concentrations. It also inhibited and eradicated biofilm formation. The in vitro binding of TP4 to bacterial outer membrane target protein, OprI, was markedly enhanced by a membrane-like surfactant sarkosyl and lipopolysaccharide, which converted TP4 into an α-helix. The solution structure of TP4 in dodecylphosphocholine was solved by NMR analyses. It contained a typical α-helix at residues Phe10-Arg22 and a distorted helical segment at Ile6-Phe10, as well as a hydrophobic core at the N-terminus and a cationic patch at the C-terminus. Residues Ile16, Leu19 and Ile20 in the hydrophobic face of the main helix were critical for the integrity of amphipathic structure, other hydrophobic residues played important roles in hemolytic and bactericidal activities. A model for the assembly of helical TP4 embedded in sarkosyl vesicle is proposed. This study may provide valuable insight for engineering AMPs to have potent bactericidal activity but low hemolytic activity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0186442</identifier><identifier>PMID: 29040295</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject><![CDATA[Amino Acid Sequence ; Amino acids ; Animals ; Antibiotics ; Antiinfectives and antibacterials ; Antimicrobial agents ; Antimicrobial Cationic Peptides - chemical synthesis ; Antimicrobial Cationic Peptides - chemistry ; Antimicrobial Cationic Peptides - isolation & purification ; Antimicrobial Cationic Peptides - pharmacology ; Antimicrobial peptides ; Bacteria ; Bacterial infections ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Bactericidal activity ; Biofilms ; Biofilms - drug effects ; Biofilms - growth & development ; Biology and Life Sciences ; C-Terminus ; Candida albicans - drug effects ; Candida albicans - growth & development ; Cell Membrane Permeability - drug effects ; Cell proliferation ; Cichlids - metabolism ; Cytotoxicity ; Depolarization ; Drug resistance ; E coli ; Erythrocytes - drug effects ; Escherichia coli ; Fish Proteins - chemical synthesis ; Fish Proteins - chemistry ; Fish Proteins - isolation & purification ; Fish Proteins - pharmacology ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Immune system ; Innate immunity ; Laboratory animals ; Lipopolysaccharides ; Lipopolysaccharides - chemistry ; Lipoproteins - chemistry ; Lipoproteins - metabolism ; Listeria monocytogenes - drug effects ; Listeria monocytogenes - growth & development ; Medicine and Health Sciences ; Membrane potential ; Membrane proteins ; Methicillin-Resistant Staphylococcus aureus - drug effects ; Methicillin-Resistant Staphylococcus aureus - growth & development ; Mice ; Mice, Inbred C57BL ; Microbial Sensitivity Tests ; Models, Molecular ; N-Terminus ; NMR ; Nuclear magnetic resonance ; Nuclear Magnetic Resonance, Biomolecular ; Oreochromis niloticus ; Peptides ; Phosphorylcholine - analogs & derivatives ; Phosphorylcholine - chemistry ; Physical Sciences ; Physiological aspects ; Properties ; Protein Binding ; Protein Conformation, alpha-Helical ; Proteins ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - drug effects ; Pseudomonas aeruginosa - growth & development ; Pseudomonas aeruginosa - metabolism ; Research and analysis methods ; Residues ; Sarcosine - analogs & derivatives ; Sarcosine - chemistry ; Sodium ; Staphylococcus aureus ; Staphylococcus infections ; Surfactants ; Tilapia]]></subject><ispartof>PloS one, 2017-10, Vol.12 (10), p.e0186442</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Chang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Chang et al 2017 Chang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-481af8ed43917a462b8e3e1b3b1f648e6bd3e781ff70fac69affbd2b872b317a3</citedby><cites>FETCH-LOGICAL-c692t-481af8ed43917a462b8e3e1b3b1f648e6bd3e781ff70fac69affbd2b872b317a3</cites><orcidid>0000-0001-5527-4736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645128/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645128/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29040295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Massiah, Michael</contributor><creatorcontrib>Chang, Ting-Wei</creatorcontrib><creatorcontrib>Wei, Shu-Yi</creatorcontrib><creatorcontrib>Wang, Shih-Han</creatorcontrib><creatorcontrib>Wei, Hung-Mu</creatorcontrib><creatorcontrib>Wang, Yu-June</creatorcontrib><creatorcontrib>Wang, Chiu-Feng</creatorcontrib><creatorcontrib>Chen, Chinpan</creatorcontrib><creatorcontrib>Liao, You-Di</creatorcontrib><title>Hydrophobic residues are critical for the helix-forming, hemolytic and bactericidal activities of amphipathic antimicrobial peptide TP4</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Antimicrobial peptides are important components of the host innate defense mechanism against invading pathogens, especially for drug-resistant bacteria. In addition to bactericidal activity, the 25 residue peptide TP4 isolated from Nile tilapia also stimulates cell proliferation and regulates the innate immune system in mice. In this report, TP4 hyperpolarized and depolarized the membrane potential of Pseudomonas aeruginosa at sub-lethal and lethal concentrations. It also inhibited and eradicated biofilm formation. The in vitro binding of TP4 to bacterial outer membrane target protein, OprI, was markedly enhanced by a membrane-like surfactant sarkosyl and lipopolysaccharide, which converted TP4 into an α-helix. The solution structure of TP4 in dodecylphosphocholine was solved by NMR analyses. It contained a typical α-helix at residues Phe10-Arg22 and a distorted helical segment at Ile6-Phe10, as well as a hydrophobic core at the N-terminus and a cationic patch at the C-terminus. Residues Ile16, Leu19 and Ile20 in the hydrophobic face of the main helix were critical for the integrity of amphipathic structure, other hydrophobic residues played important roles in hemolytic and bactericidal activities. A model for the assembly of helical TP4 embedded in sarkosyl vesicle is proposed. This study may provide valuable insight for engineering AMPs to have potent bactericidal activity but low hemolytic activity.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Antimicrobial Cationic Peptides - chemical synthesis</subject><subject>Antimicrobial Cationic Peptides - chemistry</subject><subject>Antimicrobial Cationic Peptides - isolation & purification</subject><subject>Antimicrobial Cationic Peptides - pharmacology</subject><subject>Antimicrobial peptides</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bactericidal activity</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Biofilms - growth & development</subject><subject>Biology and Life Sciences</subject><subject>C-Terminus</subject><subject>Candida albicans - drug effects</subject><subject>Candida albicans - growth & development</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Cell proliferation</subject><subject>Cichlids - metabolism</subject><subject>Cytotoxicity</subject><subject>Depolarization</subject><subject>Drug resistance</subject><subject>E coli</subject><subject>Erythrocytes - drug effects</subject><subject>Escherichia coli</subject><subject>Fish Proteins - chemical synthesis</subject><subject>Fish Proteins - chemistry</subject><subject>Fish Proteins - isolation & purification</subject><subject>Fish Proteins - pharmacology</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Immune system</subject><subject>Innate immunity</subject><subject>Laboratory animals</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - chemistry</subject><subject>Lipoproteins - chemistry</subject><subject>Lipoproteins - metabolism</subject><subject>Listeria monocytogenes - drug effects</subject><subject>Listeria monocytogenes - growth & development</subject><subject>Medicine and Health Sciences</subject><subject>Membrane potential</subject><subject>Membrane proteins</subject><subject>Methicillin-Resistant Staphylococcus aureus - drug effects</subject><subject>Methicillin-Resistant Staphylococcus aureus - growth & development</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microbial Sensitivity Tests</subject><subject>Models, Molecular</subject><subject>N-Terminus</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Oreochromis niloticus</subject><subject>Peptides</subject><subject>Phosphorylcholine - analogs & derivatives</subject><subject>Phosphorylcholine - chemistry</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Properties</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Proteins</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - drug effects</subject><subject>Pseudomonas aeruginosa - growth & development</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>Research and analysis methods</subject><subject>Residues</subject><subject>Sarcosine - analogs & derivatives</subject><subject>Sarcosine - chemistry</subject><subject>Sodium</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus infections</subject><subject>Surfactants</subject><subject>Tilapia</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9EBQRDcNV8zk7kRSlG7UKho9TZkJic7WWYmY5It3V_g3_a0uy27oCC5yNfzvklOzsmyl5TMKa_oh5Vfh1H388mPMCdUlkKwR9kxrTmblYzwx3vjo-xZjCtCCi7L8ml2xGoiCKuL4-z3-cYEP3W-cW0eIDqzhpjrAHkbXHKt7nPrQ546yDvo3c0MZ4Mbl-9xOvh-g0iuR5M3uk0QXOsMKnDsrlGNTt7mepg6N-nU3aHJDa4NeBxyE0zJGcivvorn2ROr-wgvdv1J9uPzp6uz89nF5ZfF2enFrC1rlmZCUm0lGMFrWmlRskYCB9rwhtpSSCgbw6GS1NqKWI0abW1jkKpYw1HBT7LXW9-p91HtYhgVrQtGCillhcRiSxivV2oKbtBho7x26m7Bh6XSAZ_dgwKiORjJdcGkEJQ1RLa0MnVdaAItGPT6uDtt3QxgWhhT0P2B6eHO6Dq19NeqKEVBmUSDNzuD4H_hz6R_XHlHLTXeyo3Wo1k7uNiq04ISwrjgFKn5XyhsBvBLMIusw_UDwbsDATIJbtJSr2NUi-_f_p-9_HnIvt1jO9B96qLv18n5MR6CYgtiwsQYwD5EjhJ1WwT30VC3RaB2RYCyV_tRfxDdZz3_A6Z2BNE</recordid><startdate>20171017</startdate><enddate>20171017</enddate><creator>Chang, Ting-Wei</creator><creator>Wei, Shu-Yi</creator><creator>Wang, Shih-Han</creator><creator>Wei, Hung-Mu</creator><creator>Wang, Yu-June</creator><creator>Wang, Chiu-Feng</creator><creator>Chen, Chinpan</creator><creator>Liao, You-Di</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5527-4736</orcidid></search><sort><creationdate>20171017</creationdate><title>Hydrophobic residues are critical for the helix-forming, hemolytic and bactericidal activities of amphipathic antimicrobial peptide TP4</title><author>Chang, Ting-Wei ; Wei, Shu-Yi ; Wang, Shih-Han ; Wei, Hung-Mu ; Wang, Yu-June ; Wang, Chiu-Feng ; Chen, Chinpan ; Liao, You-Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-481af8ed43917a462b8e3e1b3b1f648e6bd3e781ff70fac69affbd2b872b317a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Antimicrobial Cationic Peptides - chemical synthesis</topic><topic>Antimicrobial Cationic Peptides - chemistry</topic><topic>Antimicrobial Cationic Peptides - isolation & purification</topic><topic>Antimicrobial Cationic Peptides - pharmacology</topic><topic>Antimicrobial peptides</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bactericidal activity</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Biofilms - growth & development</topic><topic>Biology and Life Sciences</topic><topic>C-Terminus</topic><topic>Candida albicans - drug effects</topic><topic>Candida albicans - growth & development</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Cell proliferation</topic><topic>Cichlids - metabolism</topic><topic>Cytotoxicity</topic><topic>Depolarization</topic><topic>Drug resistance</topic><topic>E coli</topic><topic>Erythrocytes - drug effects</topic><topic>Escherichia coli</topic><topic>Fish Proteins - chemical synthesis</topic><topic>Fish Proteins - chemistry</topic><topic>Fish Proteins - isolation & purification</topic><topic>Fish Proteins - pharmacology</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Immune system</topic><topic>Innate immunity</topic><topic>Laboratory animals</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - chemistry</topic><topic>Lipoproteins - chemistry</topic><topic>Lipoproteins - metabolism</topic><topic>Listeria monocytogenes - drug effects</topic><topic>Listeria monocytogenes - growth & development</topic><topic>Medicine and Health Sciences</topic><topic>Membrane potential</topic><topic>Membrane proteins</topic><topic>Methicillin-Resistant Staphylococcus aureus - drug effects</topic><topic>Methicillin-Resistant Staphylococcus aureus - growth & development</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microbial Sensitivity Tests</topic><topic>Models, Molecular</topic><topic>N-Terminus</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Oreochromis niloticus</topic><topic>Peptides</topic><topic>Phosphorylcholine - analogs & derivatives</topic><topic>Phosphorylcholine - chemistry</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Properties</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Proteins</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - drug effects</topic><topic>Pseudomonas aeruginosa - growth & development</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>Research and analysis methods</topic><topic>Residues</topic><topic>Sarcosine - analogs & derivatives</topic><topic>Sarcosine - chemistry</topic><topic>Sodium</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus infections</topic><topic>Surfactants</topic><topic>Tilapia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ting-Wei</creatorcontrib><creatorcontrib>Wei, Shu-Yi</creatorcontrib><creatorcontrib>Wang, Shih-Han</creatorcontrib><creatorcontrib>Wei, Hung-Mu</creatorcontrib><creatorcontrib>Wang, Yu-June</creatorcontrib><creatorcontrib>Wang, Chiu-Feng</creatorcontrib><creatorcontrib>Chen, Chinpan</creatorcontrib><creatorcontrib>Liao, You-Di</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ting-Wei</au><au>Wei, Shu-Yi</au><au>Wang, Shih-Han</au><au>Wei, Hung-Mu</au><au>Wang, Yu-June</au><au>Wang, Chiu-Feng</au><au>Chen, Chinpan</au><au>Liao, You-Di</au><au>Massiah, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrophobic residues are critical for the helix-forming, hemolytic and bactericidal activities of amphipathic antimicrobial peptide TP4</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-10-17</date><risdate>2017</risdate><volume>12</volume><issue>10</issue><spage>e0186442</spage><pages>e0186442-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Antimicrobial peptides are important components of the host innate defense mechanism against invading pathogens, especially for drug-resistant bacteria. In addition to bactericidal activity, the 25 residue peptide TP4 isolated from Nile tilapia also stimulates cell proliferation and regulates the innate immune system in mice. In this report, TP4 hyperpolarized and depolarized the membrane potential of Pseudomonas aeruginosa at sub-lethal and lethal concentrations. It also inhibited and eradicated biofilm formation. The in vitro binding of TP4 to bacterial outer membrane target protein, OprI, was markedly enhanced by a membrane-like surfactant sarkosyl and lipopolysaccharide, which converted TP4 into an α-helix. The solution structure of TP4 in dodecylphosphocholine was solved by NMR analyses. It contained a typical α-helix at residues Phe10-Arg22 and a distorted helical segment at Ile6-Phe10, as well as a hydrophobic core at the N-terminus and a cationic patch at the C-terminus. Residues Ile16, Leu19 and Ile20 in the hydrophobic face of the main helix were critical for the integrity of amphipathic structure, other hydrophobic residues played important roles in hemolytic and bactericidal activities. A model for the assembly of helical TP4 embedded in sarkosyl vesicle is proposed. This study may provide valuable insight for engineering AMPs to have potent bactericidal activity but low hemolytic activity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29040295</pmid><doi>10.1371/journal.pone.0186442</doi><tpages>e0186442</tpages><orcidid>https://orcid.org/0000-0001-5527-4736</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-10, Vol.12 (10), p.e0186442 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1952058887 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Amino acids Animals Antibiotics Antiinfectives and antibacterials Antimicrobial agents Antimicrobial Cationic Peptides - chemical synthesis Antimicrobial Cationic Peptides - chemistry Antimicrobial Cationic Peptides - isolation & purification Antimicrobial Cationic Peptides - pharmacology Antimicrobial peptides Bacteria Bacterial infections Bacterial Proteins - chemistry Bacterial Proteins - metabolism Bactericidal activity Biofilms Biofilms - drug effects Biofilms - growth & development Biology and Life Sciences C-Terminus Candida albicans - drug effects Candida albicans - growth & development Cell Membrane Permeability - drug effects Cell proliferation Cichlids - metabolism Cytotoxicity Depolarization Drug resistance E coli Erythrocytes - drug effects Escherichia coli Fish Proteins - chemical synthesis Fish Proteins - chemistry Fish Proteins - isolation & purification Fish Proteins - pharmacology Hydrophobic and Hydrophilic Interactions Hydrophobicity Immune system Innate immunity Laboratory animals Lipopolysaccharides Lipopolysaccharides - chemistry Lipoproteins - chemistry Lipoproteins - metabolism Listeria monocytogenes - drug effects Listeria monocytogenes - growth & development Medicine and Health Sciences Membrane potential Membrane proteins Methicillin-Resistant Staphylococcus aureus - drug effects Methicillin-Resistant Staphylococcus aureus - growth & development Mice Mice, Inbred C57BL Microbial Sensitivity Tests Models, Molecular N-Terminus NMR Nuclear magnetic resonance Nuclear Magnetic Resonance, Biomolecular Oreochromis niloticus Peptides Phosphorylcholine - analogs & derivatives Phosphorylcholine - chemistry Physical Sciences Physiological aspects Properties Protein Binding Protein Conformation, alpha-Helical Proteins Pseudomonas aeruginosa Pseudomonas aeruginosa - drug effects Pseudomonas aeruginosa - growth & development Pseudomonas aeruginosa - metabolism Research and analysis methods Residues Sarcosine - analogs & derivatives Sarcosine - chemistry Sodium Staphylococcus aureus Staphylococcus infections Surfactants Tilapia |
title | Hydrophobic residues are critical for the helix-forming, hemolytic and bactericidal activities of amphipathic antimicrobial peptide TP4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrophobic%20residues%20are%20critical%20for%20the%20helix-forming,%20hemolytic%20and%20bactericidal%20activities%20of%20amphipathic%20antimicrobial%20peptide%20TP4&rft.jtitle=PloS%20one&rft.au=Chang,%20Ting-Wei&rft.date=2017-10-17&rft.volume=12&rft.issue=10&rft.spage=e0186442&rft.pages=e0186442-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0186442&rft_dat=%3Cgale_plos_%3EA510023431%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1952058887&rft_id=info:pmid/29040295&rft_galeid=A510023431&rft_doaj_id=oai_doaj_org_article_e0a3ed83a5284412b08c17d995a0eced&rfr_iscdi=true |