Non-linear Min protein interactions generate harmonics that signal mid-cell division in Escherichia coli
The Min protein system creates a dynamic spatial pattern in Escherichia coli cells where the proteins MinD and MinE oscillate from pole to pole. MinD positions MinC, an inhibitor of FtsZ ring formation, contributing to the mid-cell localization of cell division. In this paper, Fourier analysis is us...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-10, Vol.12 (10), p.e0185947-e0185947 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0185947 |
---|---|
container_issue | 10 |
container_start_page | e0185947 |
container_title | PloS one |
container_volume | 12 |
creator | Walsh, James C Angstmann, Christopher N Duggin, Iain G Curmi, Paul M G |
description | The Min protein system creates a dynamic spatial pattern in Escherichia coli cells where the proteins MinD and MinE oscillate from pole to pole. MinD positions MinC, an inhibitor of FtsZ ring formation, contributing to the mid-cell localization of cell division. In this paper, Fourier analysis is used to decompose experimental and model MinD spatial distributions into time-dependent harmonic components. In both experiment and model, the second harmonic component is responsible for producing a mid-cell minimum in MinD concentration. The features of this harmonic are robust in both experiment and model. Fourier analysis reveals a close correspondence between the time-dependent behaviour of the harmonic components in the experimental data and model. Given this, each molecular species in the model was analysed individually. This analysis revealed that membrane-bound MinD dimer shows the mid-cell minimum with the highest contrast when averaged over time, carrying the strongest signal for positioning the cell division ring. This concurs with previous data showing that the MinD dimer binds to MinC inhibiting FtsZ ring formation. These results show that non-linear interactions of Min proteins are essential for producing the mid-cell positioning signal via the generation of second-order harmonic components in the time-dependent spatial protein distribution. |
doi_str_mv | 10.1371/journal.pone.0185947 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1951986606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A510023460</galeid><doaj_id>oai_doaj_org_article_da192db2fc5c4ea2ad7f45f64ee4a05c</doaj_id><sourcerecordid>A510023460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c418fc2ca8440c5cdc72746a4eacf60e2d16f87d137ba943577be19d8b5a8403</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguhFxyRN-nEjLMuqA6sLungbMslpm6FNxiRd9N-bznSXqeyF9CJN8rxvzjnJSZKXGK1wXuIPWzs6I_rVzhpYIVyxmpaPklNc5yQrCMofH_2fJM-83yLE8qooniYnpEYUkSo_Tbpv1mS9NiBc-lWbdOdsgDhqE8AJGbQ1Pm3BxEmAtBNusEZLn4ZOhNTrNkaQDlplEvo-VfpW-6iI6vTSyw6clp0WqbS9fp48aUTv4cU8niU3ny5vLr5kV9ef1xfnV5ksahIySXHVSCJFRSmSTCpZkpIWgoKQTYGAKFw0ValiCTaipjkryw3gWlUbFiUoP0teH2x3vfV8rpHnuGa4jrmjIhLrA6Gs2PKd04Nwf7gVmu8XrGu5cEHLHrgSuCZqQ5oYSAyACFU2lDUFBaACMRm9Ps6njZsBlAQTnOgXpssdozve2lvOCspQVUaDd7OBs79G8IEP2k-1FAbsuI-bMELLfMrszT_ow9nNVCtiAto0Np4rJ1N-zjBCJKfF5LV6gIqfgkHL-KAaHdcXgvcLQWQC_A6tGL3n6x_f_5-9_rlk3x6xHYg-dN724_7dLUF6AKWz3jto7ouMEZ_64a4afOoHPvdDlL06vqB70V0D5H8BSo4Gww</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1951986606</pqid></control><display><type>article</type><title>Non-linear Min protein interactions generate harmonics that signal mid-cell division in Escherichia coli</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Walsh, James C ; Angstmann, Christopher N ; Duggin, Iain G ; Curmi, Paul M G</creator><contributor>Aguilar, Ruben Claudio</contributor><creatorcontrib>Walsh, James C ; Angstmann, Christopher N ; Duggin, Iain G ; Curmi, Paul M G ; Aguilar, Ruben Claudio</creatorcontrib><description>The Min protein system creates a dynamic spatial pattern in Escherichia coli cells where the proteins MinD and MinE oscillate from pole to pole. MinD positions MinC, an inhibitor of FtsZ ring formation, contributing to the mid-cell localization of cell division. In this paper, Fourier analysis is used to decompose experimental and model MinD spatial distributions into time-dependent harmonic components. In both experiment and model, the second harmonic component is responsible for producing a mid-cell minimum in MinD concentration. The features of this harmonic are robust in both experiment and model. Fourier analysis reveals a close correspondence between the time-dependent behaviour of the harmonic components in the experimental data and model. Given this, each molecular species in the model was analysed individually. This analysis revealed that membrane-bound MinD dimer shows the mid-cell minimum with the highest contrast when averaged over time, carrying the strongest signal for positioning the cell division ring. This concurs with previous data showing that the MinD dimer binds to MinC inhibiting FtsZ ring formation. These results show that non-linear interactions of Min proteins are essential for producing the mid-cell positioning signal via the generation of second-order harmonic components in the time-dependent spatial protein distribution.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0185947</identifier><identifier>PMID: 29040283</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biology and Life Sciences ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Division ; Computer and Information Sciences ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fourier Analysis ; Gene Expression Regulation, Bacterial ; Kinetics ; Localization ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Min protein ; Morphogenesis ; Nonlinear Dynamics ; Partial differential equations ; Physical sciences ; Protein interaction ; Protein Multimerization ; Proteins ; Research and Analysis Methods ; Signal Transduction ; Spatial distribution ; Time dependence ; Time Factors</subject><ispartof>PloS one, 2017-10, Vol.12 (10), p.e0185947-e0185947</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Walsh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Walsh et al 2017 Walsh et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c418fc2ca8440c5cdc72746a4eacf60e2d16f87d137ba943577be19d8b5a8403</citedby><cites>FETCH-LOGICAL-c692t-c418fc2ca8440c5cdc72746a4eacf60e2d16f87d137ba943577be19d8b5a8403</cites><orcidid>0000-0001-5762-7638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645087/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645087/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29040283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aguilar, Ruben Claudio</contributor><creatorcontrib>Walsh, James C</creatorcontrib><creatorcontrib>Angstmann, Christopher N</creatorcontrib><creatorcontrib>Duggin, Iain G</creatorcontrib><creatorcontrib>Curmi, Paul M G</creatorcontrib><title>Non-linear Min protein interactions generate harmonics that signal mid-cell division in Escherichia coli</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The Min protein system creates a dynamic spatial pattern in Escherichia coli cells where the proteins MinD and MinE oscillate from pole to pole. MinD positions MinC, an inhibitor of FtsZ ring formation, contributing to the mid-cell localization of cell division. In this paper, Fourier analysis is used to decompose experimental and model MinD spatial distributions into time-dependent harmonic components. In both experiment and model, the second harmonic component is responsible for producing a mid-cell minimum in MinD concentration. The features of this harmonic are robust in both experiment and model. Fourier analysis reveals a close correspondence between the time-dependent behaviour of the harmonic components in the experimental data and model. Given this, each molecular species in the model was analysed individually. This analysis revealed that membrane-bound MinD dimer shows the mid-cell minimum with the highest contrast when averaged over time, carrying the strongest signal for positioning the cell division ring. This concurs with previous data showing that the MinD dimer binds to MinC inhibiting FtsZ ring formation. These results show that non-linear interactions of Min proteins are essential for producing the mid-cell positioning signal via the generation of second-order harmonic components in the time-dependent spatial protein distribution.</description><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Division</subject><subject>Computer and Information Sciences</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fourier Analysis</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Kinetics</subject><subject>Localization</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Min protein</subject><subject>Morphogenesis</subject><subject>Nonlinear Dynamics</subject><subject>Partial differential equations</subject><subject>Physical sciences</subject><subject>Protein interaction</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Signal Transduction</subject><subject>Spatial distribution</subject><subject>Time dependence</subject><subject>Time Factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguhFxyRN-nEjLMuqA6sLungbMslpm6FNxiRd9N-bznSXqeyF9CJN8rxvzjnJSZKXGK1wXuIPWzs6I_rVzhpYIVyxmpaPklNc5yQrCMofH_2fJM-83yLE8qooniYnpEYUkSo_Tbpv1mS9NiBc-lWbdOdsgDhqE8AJGbQ1Pm3BxEmAtBNusEZLn4ZOhNTrNkaQDlplEvo-VfpW-6iI6vTSyw6clp0WqbS9fp48aUTv4cU8niU3ny5vLr5kV9ef1xfnV5ksahIySXHVSCJFRSmSTCpZkpIWgoKQTYGAKFw0ValiCTaipjkryw3gWlUbFiUoP0teH2x3vfV8rpHnuGa4jrmjIhLrA6Gs2PKd04Nwf7gVmu8XrGu5cEHLHrgSuCZqQ5oYSAyACFU2lDUFBaACMRm9Ps6njZsBlAQTnOgXpssdozve2lvOCspQVUaDd7OBs79G8IEP2k-1FAbsuI-bMELLfMrszT_ow9nNVCtiAto0Np4rJ1N-zjBCJKfF5LV6gIqfgkHL-KAaHdcXgvcLQWQC_A6tGL3n6x_f_5-9_rlk3x6xHYg-dN724_7dLUF6AKWz3jto7ouMEZ_64a4afOoHPvdDlL06vqB70V0D5H8BSo4Gww</recordid><startdate>20171017</startdate><enddate>20171017</enddate><creator>Walsh, James C</creator><creator>Angstmann, Christopher N</creator><creator>Duggin, Iain G</creator><creator>Curmi, Paul M G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5762-7638</orcidid></search><sort><creationdate>20171017</creationdate><title>Non-linear Min protein interactions generate harmonics that signal mid-cell division in Escherichia coli</title><author>Walsh, James C ; Angstmann, Christopher N ; Duggin, Iain G ; Curmi, Paul M G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c418fc2ca8440c5cdc72746a4eacf60e2d16f87d137ba943577be19d8b5a8403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Division</topic><topic>Computer and Information Sciences</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fourier Analysis</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Kinetics</topic><topic>Localization</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Min protein</topic><topic>Morphogenesis</topic><topic>Nonlinear Dynamics</topic><topic>Partial differential equations</topic><topic>Physical sciences</topic><topic>Protein interaction</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Signal Transduction</topic><topic>Spatial distribution</topic><topic>Time dependence</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walsh, James C</creatorcontrib><creatorcontrib>Angstmann, Christopher N</creatorcontrib><creatorcontrib>Duggin, Iain G</creatorcontrib><creatorcontrib>Curmi, Paul M G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walsh, James C</au><au>Angstmann, Christopher N</au><au>Duggin, Iain G</au><au>Curmi, Paul M G</au><au>Aguilar, Ruben Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear Min protein interactions generate harmonics that signal mid-cell division in Escherichia coli</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-10-17</date><risdate>2017</risdate><volume>12</volume><issue>10</issue><spage>e0185947</spage><epage>e0185947</epage><pages>e0185947-e0185947</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The Min protein system creates a dynamic spatial pattern in Escherichia coli cells where the proteins MinD and MinE oscillate from pole to pole. MinD positions MinC, an inhibitor of FtsZ ring formation, contributing to the mid-cell localization of cell division. In this paper, Fourier analysis is used to decompose experimental and model MinD spatial distributions into time-dependent harmonic components. In both experiment and model, the second harmonic component is responsible for producing a mid-cell minimum in MinD concentration. The features of this harmonic are robust in both experiment and model. Fourier analysis reveals a close correspondence between the time-dependent behaviour of the harmonic components in the experimental data and model. Given this, each molecular species in the model was analysed individually. This analysis revealed that membrane-bound MinD dimer shows the mid-cell minimum with the highest contrast when averaged over time, carrying the strongest signal for positioning the cell division ring. This concurs with previous data showing that the MinD dimer binds to MinC inhibiting FtsZ ring formation. These results show that non-linear interactions of Min proteins are essential for producing the mid-cell positioning signal via the generation of second-order harmonic components in the time-dependent spatial protein distribution.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29040283</pmid><doi>10.1371/journal.pone.0185947</doi><tpages>e0185947</tpages><orcidid>https://orcid.org/0000-0001-5762-7638</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-10, Vol.12 (10), p.e0185947-e0185947 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1951986606 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphatases - genetics Adenosine Triphosphatases - metabolism Bacterial Proteins - genetics Bacterial Proteins - metabolism Biology and Life Sciences Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Division Computer and Information Sciences Cytoskeletal Proteins - genetics Cytoskeletal Proteins - metabolism E coli Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Fourier Analysis Gene Expression Regulation, Bacterial Kinetics Localization Membrane Proteins - genetics Membrane Proteins - metabolism Min protein Morphogenesis Nonlinear Dynamics Partial differential equations Physical sciences Protein interaction Protein Multimerization Proteins Research and Analysis Methods Signal Transduction Spatial distribution Time dependence Time Factors |
title | Non-linear Min protein interactions generate harmonics that signal mid-cell division in Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T10%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20Min%20protein%20interactions%20generate%20harmonics%20that%20signal%20mid-cell%20division%20in%20Escherichia%20coli&rft.jtitle=PloS%20one&rft.au=Walsh,%20James%20C&rft.date=2017-10-17&rft.volume=12&rft.issue=10&rft.spage=e0185947&rft.epage=e0185947&rft.pages=e0185947-e0185947&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0185947&rft_dat=%3Cgale_plos_%3EA510023460%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1951986606&rft_id=info:pmid/29040283&rft_galeid=A510023460&rft_doaj_id=oai_doaj_org_article_da192db2fc5c4ea2ad7f45f64ee4a05c&rfr_iscdi=true |