Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria
Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the f...
Gespeichert in:
Veröffentlicht in: | PloS one 2016-02, Vol.11 (2), p.e0149280-e0149280 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0149280 |
---|---|
container_issue | 2 |
container_start_page | e0149280 |
container_title | PloS one |
container_volume | 11 |
creator | Liu, Huiqin Dong, Chunling Zhao, Tingchang Han, Jucai Wang, Tieling Wen, Xiangzhen Huang, Qi |
description | Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv), we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv. |
doi_str_mv | 10.1371/journal.pone.0149280 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1950592150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A444166342</galeid><doaj_id>oai_doaj_org_article_37ad513b68a144929aac074eeeff0d5b</doaj_id><sourcerecordid>A444166342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8b56463778c2c0eb19565c14b030c79819c8a196669b41a1ea4b090cde140b633</originalsourceid><addsrcrecordid>eNqNkuFr1DAYxosobk7_A9GAIPrhzqRJ0-aLcAxvHgwG0w2_hTR9e83ZNrckHe6_N7frxlX2QQppSH7P8yZvniR5S_Cc0Jx82djB9aqdb20Pc0yYSAv8LDkmgqYznmL6_GB-lLzyfoNxRgvOXyZHKRcE05QdJ9fLodfB2OiEFnG488YjW6PQAFqCc0ajq21QvwFdwnpoVbAOnUEPqB4cMj36pfrQ2C7qPboFb_SOMOp18qJWrYc34_8kuVp--3n6fXZ-cbY6XZzPNBdpmBVlxhmneV7oVGMoich4pgkrMcU6FwURulBEcM5FyYgioOKWwLoCwnDJKT1J3u99t631cmyJl9EHZyIlGY7Eak9UVm3k1plOuTtplZH3C9atpXLB6BYkzVWVEVryWJPFfgqlNM4ZANQ1rrIyen0dqw1lB5WGPjjVTkynO71p5NreSpZzTgoRDT6NBs7eDOCD7IzX0LaqBzvEc-e8yDhh9-f-8A_69O1Gaq3iBUxf21hX70zlgjFGOKcsjdT8CSp-FXRGx_zUJq5PBJ8ngsgE-BPWavBern5c_j97cT1lPx6wDag2NN62wy6AfgqyPaid9d5B_dhkguUu_g_dkLv4yzH-Ufbu8IEeRQ95p38BGmP-Rg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950592150</pqid></control><display><type>article</type><title>Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Huiqin ; Dong, Chunling ; Zhao, Tingchang ; Han, Jucai ; Wang, Tieling ; Wen, Xiangzhen ; Huang, Qi</creator><contributor>Roop, Roy Martin</contributor><creatorcontrib>Liu, Huiqin ; Dong, Chunling ; Zhao, Tingchang ; Han, Jucai ; Wang, Tieling ; Wen, Xiangzhen ; Huang, Qi ; Roop, Roy Martin</creatorcontrib><description>Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv), we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0149280</identifier><identifier>PMID: 26910324</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agriculture ; Alleles ; Antibiotics ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biofilms ; Biology and Life Sciences ; Cell survival ; Cloning ; Copper ; E coli ; Escherichia coli ; Functional analysis ; Genes ; Genetic aspects ; Gram-negative bacteria ; Homeostasis ; Horticulture ; Iron ; Iron - metabolism ; Lycopersicon esculentum - microbiology ; Medicine and Health Sciences ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutation ; Oryza ; Oxidative stress ; Pathogenesis ; Physiological aspects ; Plant diseases ; Plant Diseases - microbiology ; Plant Leaves - microbiology ; Plasmids ; Proteins ; Pseudomonas aeruginosa ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Research and Analysis Methods ; Site-directed mutagenesis ; Survival ; Swimming ; Tomatoes ; Toxicity ; Transport proteins ; Virulence ; Xanthomonas campestris ; Xanthomonas oryzae ; Xanthomonas vesicatoria ; Xanthomonas vesicatoria - genetics ; Xanthomonas vesicatoria - metabolism ; Xanthomonas vesicatoria - pathogenicity</subject><ispartof>PloS one, 2016-02, Vol.11 (2), p.e0149280-e0149280</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8b56463778c2c0eb19565c14b030c79819c8a196669b41a1ea4b090cde140b633</citedby><cites>FETCH-LOGICAL-c692t-8b56463778c2c0eb19565c14b030c79819c8a196669b41a1ea4b090cde140b633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766189/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766189/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26910324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Roop, Roy Martin</contributor><creatorcontrib>Liu, Huiqin</creatorcontrib><creatorcontrib>Dong, Chunling</creatorcontrib><creatorcontrib>Zhao, Tingchang</creatorcontrib><creatorcontrib>Han, Jucai</creatorcontrib><creatorcontrib>Wang, Tieling</creatorcontrib><creatorcontrib>Wen, Xiangzhen</creatorcontrib><creatorcontrib>Huang, Qi</creatorcontrib><title>Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv), we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biofilms</subject><subject>Biology and Life Sciences</subject><subject>Cell survival</subject><subject>Cloning</subject><subject>Copper</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Functional analysis</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Gram-negative bacteria</subject><subject>Homeostasis</subject><subject>Horticulture</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Lycopersicon esculentum - microbiology</subject><subject>Medicine and Health Sciences</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Oryza</subject><subject>Oxidative stress</subject><subject>Pathogenesis</subject><subject>Physiological aspects</subject><subject>Plant diseases</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Leaves - microbiology</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Pseudomonas aeruginosa</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Site-directed mutagenesis</subject><subject>Survival</subject><subject>Swimming</subject><subject>Tomatoes</subject><subject>Toxicity</subject><subject>Transport proteins</subject><subject>Virulence</subject><subject>Xanthomonas campestris</subject><subject>Xanthomonas oryzae</subject><subject>Xanthomonas vesicatoria</subject><subject>Xanthomonas vesicatoria - genetics</subject><subject>Xanthomonas vesicatoria - metabolism</subject><subject>Xanthomonas vesicatoria - pathogenicity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkuFr1DAYxosobk7_A9GAIPrhzqRJ0-aLcAxvHgwG0w2_hTR9e83ZNrckHe6_N7frxlX2QQppSH7P8yZvniR5S_Cc0Jx82djB9aqdb20Pc0yYSAv8LDkmgqYznmL6_GB-lLzyfoNxRgvOXyZHKRcE05QdJ9fLodfB2OiEFnG488YjW6PQAFqCc0ajq21QvwFdwnpoVbAOnUEPqB4cMj36pfrQ2C7qPboFb_SOMOp18qJWrYc34_8kuVp--3n6fXZ-cbY6XZzPNBdpmBVlxhmneV7oVGMoich4pgkrMcU6FwURulBEcM5FyYgioOKWwLoCwnDJKT1J3u99t631cmyJl9EHZyIlGY7Eak9UVm3k1plOuTtplZH3C9atpXLB6BYkzVWVEVryWJPFfgqlNM4ZANQ1rrIyen0dqw1lB5WGPjjVTkynO71p5NreSpZzTgoRDT6NBs7eDOCD7IzX0LaqBzvEc-e8yDhh9-f-8A_69O1Gaq3iBUxf21hX70zlgjFGOKcsjdT8CSp-FXRGx_zUJq5PBJ8ngsgE-BPWavBern5c_j97cT1lPx6wDag2NN62wy6AfgqyPaid9d5B_dhkguUu_g_dkLv4yzH-Ufbu8IEeRQ95p38BGmP-Rg</recordid><startdate>20160224</startdate><enddate>20160224</enddate><creator>Liu, Huiqin</creator><creator>Dong, Chunling</creator><creator>Zhao, Tingchang</creator><creator>Han, Jucai</creator><creator>Wang, Tieling</creator><creator>Wen, Xiangzhen</creator><creator>Huang, Qi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160224</creationdate><title>Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria</title><author>Liu, Huiqin ; Dong, Chunling ; Zhao, Tingchang ; Han, Jucai ; Wang, Tieling ; Wen, Xiangzhen ; Huang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8b56463778c2c0eb19565c14b030c79819c8a196669b41a1ea4b090cde140b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biofilms</topic><topic>Biology and Life Sciences</topic><topic>Cell survival</topic><topic>Cloning</topic><topic>Copper</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Functional analysis</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Gram-negative bacteria</topic><topic>Homeostasis</topic><topic>Horticulture</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Lycopersicon esculentum - microbiology</topic><topic>Medicine and Health Sciences</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Oryza</topic><topic>Oxidative stress</topic><topic>Pathogenesis</topic><topic>Physiological aspects</topic><topic>Plant diseases</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Leaves - microbiology</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Pseudomonas aeruginosa</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Site-directed mutagenesis</topic><topic>Survival</topic><topic>Swimming</topic><topic>Tomatoes</topic><topic>Toxicity</topic><topic>Transport proteins</topic><topic>Virulence</topic><topic>Xanthomonas campestris</topic><topic>Xanthomonas oryzae</topic><topic>Xanthomonas vesicatoria</topic><topic>Xanthomonas vesicatoria - genetics</topic><topic>Xanthomonas vesicatoria - metabolism</topic><topic>Xanthomonas vesicatoria - pathogenicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Huiqin</creatorcontrib><creatorcontrib>Dong, Chunling</creatorcontrib><creatorcontrib>Zhao, Tingchang</creatorcontrib><creatorcontrib>Han, Jucai</creatorcontrib><creatorcontrib>Wang, Tieling</creatorcontrib><creatorcontrib>Wen, Xiangzhen</creatorcontrib><creatorcontrib>Huang, Qi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Huiqin</au><au>Dong, Chunling</au><au>Zhao, Tingchang</au><au>Han, Jucai</au><au>Wang, Tieling</au><au>Wen, Xiangzhen</au><au>Huang, Qi</au><au>Roop, Roy Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-02-24</date><risdate>2016</risdate><volume>11</volume><issue>2</issue><spage>e0149280</spage><epage>e0149280</epage><pages>e0149280-e0149280</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv), we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26910324</pmid><doi>10.1371/journal.pone.0149280</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2016-02, Vol.11 (2), p.e0149280-e0149280 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1950592150 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agriculture Alleles Antibiotics Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Biofilms Biology and Life Sciences Cell survival Cloning Copper E coli Escherichia coli Functional analysis Genes Genetic aspects Gram-negative bacteria Homeostasis Horticulture Iron Iron - metabolism Lycopersicon esculentum - microbiology Medicine and Health Sciences Mutagenesis Mutagenesis, Site-Directed Mutation Oryza Oxidative stress Pathogenesis Physiological aspects Plant diseases Plant Diseases - microbiology Plant Leaves - microbiology Plasmids Proteins Pseudomonas aeruginosa Repressor Proteins - genetics Repressor Proteins - metabolism Research and Analysis Methods Site-directed mutagenesis Survival Swimming Tomatoes Toxicity Transport proteins Virulence Xanthomonas campestris Xanthomonas oryzae Xanthomonas vesicatoria Xanthomonas vesicatoria - genetics Xanthomonas vesicatoria - metabolism Xanthomonas vesicatoria - pathogenicity |
title | Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Analysis%20of%20the%20Ferric%20Uptake%20Regulator%20Gene%20fur%20in%20Xanthomonas%20vesicatoria&rft.jtitle=PloS%20one&rft.au=Liu,%20Huiqin&rft.date=2016-02-24&rft.volume=11&rft.issue=2&rft.spage=e0149280&rft.epage=e0149280&rft.pages=e0149280-e0149280&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0149280&rft_dat=%3Cgale_plos_%3EA444166342%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950592150&rft_id=info:pmid/26910324&rft_galeid=A444166342&rft_doaj_id=oai_doaj_org_article_37ad513b68a144929aac074eeeff0d5b&rfr_iscdi=true |