Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria

Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2016-02, Vol.11 (2), p.e0149280-e0149280
Hauptverfasser: Liu, Huiqin, Dong, Chunling, Zhao, Tingchang, Han, Jucai, Wang, Tieling, Wen, Xiangzhen, Huang, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0149280
container_issue 2
container_start_page e0149280
container_title PloS one
container_volume 11
creator Liu, Huiqin
Dong, Chunling
Zhao, Tingchang
Han, Jucai
Wang, Tieling
Wen, Xiangzhen
Huang, Qi
description Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv), we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv.
doi_str_mv 10.1371/journal.pone.0149280
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1950592150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A444166342</galeid><doaj_id>oai_doaj_org_article_37ad513b68a144929aac074eeeff0d5b</doaj_id><sourcerecordid>A444166342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8b56463778c2c0eb19565c14b030c79819c8a196669b41a1ea4b090cde140b633</originalsourceid><addsrcrecordid>eNqNkuFr1DAYxosobk7_A9GAIPrhzqRJ0-aLcAxvHgwG0w2_hTR9e83ZNrckHe6_N7frxlX2QQppSH7P8yZvniR5S_Cc0Jx82djB9aqdb20Pc0yYSAv8LDkmgqYznmL6_GB-lLzyfoNxRgvOXyZHKRcE05QdJ9fLodfB2OiEFnG488YjW6PQAFqCc0ajq21QvwFdwnpoVbAOnUEPqB4cMj36pfrQ2C7qPboFb_SOMOp18qJWrYc34_8kuVp--3n6fXZ-cbY6XZzPNBdpmBVlxhmneV7oVGMoich4pgkrMcU6FwURulBEcM5FyYgioOKWwLoCwnDJKT1J3u99t631cmyJl9EHZyIlGY7Eak9UVm3k1plOuTtplZH3C9atpXLB6BYkzVWVEVryWJPFfgqlNM4ZANQ1rrIyen0dqw1lB5WGPjjVTkynO71p5NreSpZzTgoRDT6NBs7eDOCD7IzX0LaqBzvEc-e8yDhh9-f-8A_69O1Gaq3iBUxf21hX70zlgjFGOKcsjdT8CSp-FXRGx_zUJq5PBJ8ngsgE-BPWavBern5c_j97cT1lPx6wDag2NN62wy6AfgqyPaid9d5B_dhkguUu_g_dkLv4yzH-Ufbu8IEeRQ95p38BGmP-Rg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950592150</pqid></control><display><type>article</type><title>Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Huiqin ; Dong, Chunling ; Zhao, Tingchang ; Han, Jucai ; Wang, Tieling ; Wen, Xiangzhen ; Huang, Qi</creator><contributor>Roop, Roy Martin</contributor><creatorcontrib>Liu, Huiqin ; Dong, Chunling ; Zhao, Tingchang ; Han, Jucai ; Wang, Tieling ; Wen, Xiangzhen ; Huang, Qi ; Roop, Roy Martin</creatorcontrib><description>Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv), we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0149280</identifier><identifier>PMID: 26910324</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agriculture ; Alleles ; Antibiotics ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biofilms ; Biology and Life Sciences ; Cell survival ; Cloning ; Copper ; E coli ; Escherichia coli ; Functional analysis ; Genes ; Genetic aspects ; Gram-negative bacteria ; Homeostasis ; Horticulture ; Iron ; Iron - metabolism ; Lycopersicon esculentum - microbiology ; Medicine and Health Sciences ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutation ; Oryza ; Oxidative stress ; Pathogenesis ; Physiological aspects ; Plant diseases ; Plant Diseases - microbiology ; Plant Leaves - microbiology ; Plasmids ; Proteins ; Pseudomonas aeruginosa ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Research and Analysis Methods ; Site-directed mutagenesis ; Survival ; Swimming ; Tomatoes ; Toxicity ; Transport proteins ; Virulence ; Xanthomonas campestris ; Xanthomonas oryzae ; Xanthomonas vesicatoria ; Xanthomonas vesicatoria - genetics ; Xanthomonas vesicatoria - metabolism ; Xanthomonas vesicatoria - pathogenicity</subject><ispartof>PloS one, 2016-02, Vol.11 (2), p.e0149280-e0149280</ispartof><rights>COPYRIGHT 2016 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8b56463778c2c0eb19565c14b030c79819c8a196669b41a1ea4b090cde140b633</citedby><cites>FETCH-LOGICAL-c692t-8b56463778c2c0eb19565c14b030c79819c8a196669b41a1ea4b090cde140b633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766189/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766189/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26910324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Roop, Roy Martin</contributor><creatorcontrib>Liu, Huiqin</creatorcontrib><creatorcontrib>Dong, Chunling</creatorcontrib><creatorcontrib>Zhao, Tingchang</creatorcontrib><creatorcontrib>Han, Jucai</creatorcontrib><creatorcontrib>Wang, Tieling</creatorcontrib><creatorcontrib>Wen, Xiangzhen</creatorcontrib><creatorcontrib>Huang, Qi</creatorcontrib><title>Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv), we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biofilms</subject><subject>Biology and Life Sciences</subject><subject>Cell survival</subject><subject>Cloning</subject><subject>Copper</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Functional analysis</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Gram-negative bacteria</subject><subject>Homeostasis</subject><subject>Horticulture</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Lycopersicon esculentum - microbiology</subject><subject>Medicine and Health Sciences</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Oryza</subject><subject>Oxidative stress</subject><subject>Pathogenesis</subject><subject>Physiological aspects</subject><subject>Plant diseases</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Leaves - microbiology</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Pseudomonas aeruginosa</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Site-directed mutagenesis</subject><subject>Survival</subject><subject>Swimming</subject><subject>Tomatoes</subject><subject>Toxicity</subject><subject>Transport proteins</subject><subject>Virulence</subject><subject>Xanthomonas campestris</subject><subject>Xanthomonas oryzae</subject><subject>Xanthomonas vesicatoria</subject><subject>Xanthomonas vesicatoria - genetics</subject><subject>Xanthomonas vesicatoria - metabolism</subject><subject>Xanthomonas vesicatoria - pathogenicity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkuFr1DAYxosobk7_A9GAIPrhzqRJ0-aLcAxvHgwG0w2_hTR9e83ZNrckHe6_N7frxlX2QQppSH7P8yZvniR5S_Cc0Jx82djB9aqdb20Pc0yYSAv8LDkmgqYznmL6_GB-lLzyfoNxRgvOXyZHKRcE05QdJ9fLodfB2OiEFnG488YjW6PQAFqCc0ajq21QvwFdwnpoVbAOnUEPqB4cMj36pfrQ2C7qPboFb_SOMOp18qJWrYc34_8kuVp--3n6fXZ-cbY6XZzPNBdpmBVlxhmneV7oVGMoich4pgkrMcU6FwURulBEcM5FyYgioOKWwLoCwnDJKT1J3u99t631cmyJl9EHZyIlGY7Eak9UVm3k1plOuTtplZH3C9atpXLB6BYkzVWVEVryWJPFfgqlNM4ZANQ1rrIyen0dqw1lB5WGPjjVTkynO71p5NreSpZzTgoRDT6NBs7eDOCD7IzX0LaqBzvEc-e8yDhh9-f-8A_69O1Gaq3iBUxf21hX70zlgjFGOKcsjdT8CSp-FXRGx_zUJq5PBJ8ngsgE-BPWavBern5c_j97cT1lPx6wDag2NN62wy6AfgqyPaid9d5B_dhkguUu_g_dkLv4yzH-Ufbu8IEeRQ95p38BGmP-Rg</recordid><startdate>20160224</startdate><enddate>20160224</enddate><creator>Liu, Huiqin</creator><creator>Dong, Chunling</creator><creator>Zhao, Tingchang</creator><creator>Han, Jucai</creator><creator>Wang, Tieling</creator><creator>Wen, Xiangzhen</creator><creator>Huang, Qi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160224</creationdate><title>Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria</title><author>Liu, Huiqin ; Dong, Chunling ; Zhao, Tingchang ; Han, Jucai ; Wang, Tieling ; Wen, Xiangzhen ; Huang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8b56463778c2c0eb19565c14b030c79819c8a196669b41a1ea4b090cde140b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biofilms</topic><topic>Biology and Life Sciences</topic><topic>Cell survival</topic><topic>Cloning</topic><topic>Copper</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Functional analysis</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Gram-negative bacteria</topic><topic>Homeostasis</topic><topic>Horticulture</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Lycopersicon esculentum - microbiology</topic><topic>Medicine and Health Sciences</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Oryza</topic><topic>Oxidative stress</topic><topic>Pathogenesis</topic><topic>Physiological aspects</topic><topic>Plant diseases</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Leaves - microbiology</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Pseudomonas aeruginosa</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Site-directed mutagenesis</topic><topic>Survival</topic><topic>Swimming</topic><topic>Tomatoes</topic><topic>Toxicity</topic><topic>Transport proteins</topic><topic>Virulence</topic><topic>Xanthomonas campestris</topic><topic>Xanthomonas oryzae</topic><topic>Xanthomonas vesicatoria</topic><topic>Xanthomonas vesicatoria - genetics</topic><topic>Xanthomonas vesicatoria - metabolism</topic><topic>Xanthomonas vesicatoria - pathogenicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Huiqin</creatorcontrib><creatorcontrib>Dong, Chunling</creatorcontrib><creatorcontrib>Zhao, Tingchang</creatorcontrib><creatorcontrib>Han, Jucai</creatorcontrib><creatorcontrib>Wang, Tieling</creatorcontrib><creatorcontrib>Wen, Xiangzhen</creatorcontrib><creatorcontrib>Huang, Qi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Huiqin</au><au>Dong, Chunling</au><au>Zhao, Tingchang</au><au>Han, Jucai</au><au>Wang, Tieling</au><au>Wen, Xiangzhen</au><au>Huang, Qi</au><au>Roop, Roy Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2016-02-24</date><risdate>2016</risdate><volume>11</volume><issue>2</issue><spage>e0149280</spage><epage>e0149280</epage><pages>e0149280-e0149280</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv), we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>26910324</pmid><doi>10.1371/journal.pone.0149280</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2016-02, Vol.11 (2), p.e0149280-e0149280
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1950592150
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Agriculture
Alleles
Antibiotics
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biofilms
Biology and Life Sciences
Cell survival
Cloning
Copper
E coli
Escherichia coli
Functional analysis
Genes
Genetic aspects
Gram-negative bacteria
Homeostasis
Horticulture
Iron
Iron - metabolism
Lycopersicon esculentum - microbiology
Medicine and Health Sciences
Mutagenesis
Mutagenesis, Site-Directed
Mutation
Oryza
Oxidative stress
Pathogenesis
Physiological aspects
Plant diseases
Plant Diseases - microbiology
Plant Leaves - microbiology
Plasmids
Proteins
Pseudomonas aeruginosa
Repressor Proteins - genetics
Repressor Proteins - metabolism
Research and Analysis Methods
Site-directed mutagenesis
Survival
Swimming
Tomatoes
Toxicity
Transport proteins
Virulence
Xanthomonas campestris
Xanthomonas oryzae
Xanthomonas vesicatoria
Xanthomonas vesicatoria - genetics
Xanthomonas vesicatoria - metabolism
Xanthomonas vesicatoria - pathogenicity
title Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Analysis%20of%20the%20Ferric%20Uptake%20Regulator%20Gene%20fur%20in%20Xanthomonas%20vesicatoria&rft.jtitle=PloS%20one&rft.au=Liu,%20Huiqin&rft.date=2016-02-24&rft.volume=11&rft.issue=2&rft.spage=e0149280&rft.epage=e0149280&rft.pages=e0149280-e0149280&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0149280&rft_dat=%3Cgale_plos_%3EA444166342%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950592150&rft_id=info:pmid/26910324&rft_galeid=A444166342&rft_doaj_id=oai_doaj_org_article_37ad513b68a144929aac074eeeff0d5b&rfr_iscdi=true