A simple method for combining genetic mapping data from multiple crosses and experimental designs

Over the past decade many linkage studies have defined chromosomal intervals containing polymorphisms that modulate a variety of traits. Many phenotypes are now associated with enough mapping data that meta-analysis could help refine locations of known QTLs and detect many novel QTLs. We describe a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2007-10, Vol.2 (10), p.e1036-e1036
Hauptverfasser: Peirce, Jeremy L, Broman, Karl W, Lu, Lu, Williams, Robert W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1036
container_issue 10
container_start_page e1036
container_title PloS one
container_volume 2
creator Peirce, Jeremy L
Broman, Karl W
Lu, Lu
Williams, Robert W
description Over the past decade many linkage studies have defined chromosomal intervals containing polymorphisms that modulate a variety of traits. Many phenotypes are now associated with enough mapping data that meta-analysis could help refine locations of known QTLs and detect many novel QTLs. We describe a simple approach to combining QTL mapping results for multiple studies and demonstrate its utility using two hippocampus weight loci. Using data taken from two populations, a recombinant inbred strain set and an advanced intercross population we demonstrate considerable improvements in significance and resolution for both loci. 1-LOD support intervals were improved 51% for Hipp1a and 37% for Hipp9a. We first generate locus-wise permuted P-values for association with the phenotype from multiple maps, which can be done using a permutation method appropriate to each population. These results are then assigned to defined physical positions by interpolation between markers with known physical and genetic positions. We then use Fisher's combination test to combine position-by-position probabilities among experiments. Finally, we calculate genome-wide combined P-values by generating locus-specific P-values for each permuted map for each experiment. These permuted maps are then sampled with replacement and combined. The distribution of best locus-specific P-values for each combined map is the null distribution of genome-wide adjusted P-values. Our approach is applicable to a wide variety of segregating and non-segregating mapping populations, facilitates rapid refinement of physical QTL position, is complementary to other QTL fine mapping methods, and provides an appropriate genome-wide criterion of significance for combined mapping results.
doi_str_mv 10.1371/journal.pone.0001036
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1950342379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472240995</galeid><doaj_id>oai_doaj_org_article_0fa3980ba4354a8bbbee16e1c2f717f0</doaj_id><sourcerecordid>A472240995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c714t-fc978609816077dc2fe340038c12a03c2326fe13200456bda08f14548fda63963</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLwoIXM558NGlvFobFj4GFBb9uQ5qedLK0TW1aWf-96U7VGXFBetE2fc6b877NSZLnBNaESfLmxk9Dp5t17ztcAwABJh4kp6RgdCUosIcHzyfJkxBuADKWC_E4OSGy4CAAThO9SYNr-wbTFsedr1Lrh9T4tnSd6-q0xg5HZ9JW9_38XulRp3bwbdpOzejmOjP4EDCkuqtSvO1xcC12o27SCoOru_A0eWR1E_DZcj9Lvrx7-_nyw-rq-v32cnO1MpLwcWVNIXMBRU4ESFkZapFxAJYbQjUwQxkVFgmjADwTZaUht4RnPLeVFqwQ7Cx5udftGx_Ukk5QpMiAccpkcS9B84JIoDmJxHZPVF7fqD5a0cMP5bVTdwt-qJUeYh4NKrCaFTmUmrOM67wsS0QikMTGJZEWotbFsttUtliZGMqgmyPR4y-d26naf1fRISF5FgXOF4HBf5swjKp1wWDT6A79FJTIOXAp551e_QX-2_391GEC6z1V62jSddbH3ky8KmydiUfNuri-4ZJSDkUxd_n6qCAyI96OtZ5CUNtPH_-fvf56zJ4fsDvUzbgLvplG57twDPI9eHcQB7S_Iyag5kn55VPNk6KWSYllLw5_z5-iZTTYT_laDGg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289170281</pqid></control><display><type>article</type><title>A simple method for combining genetic mapping data from multiple crosses and experimental designs</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Peirce, Jeremy L ; Broman, Karl W ; Lu, Lu ; Williams, Robert W</creator><contributor>Zaas, Aimee</contributor><creatorcontrib>Peirce, Jeremy L ; Broman, Karl W ; Lu, Lu ; Williams, Robert W ; Zaas, Aimee</creatorcontrib><description>Over the past decade many linkage studies have defined chromosomal intervals containing polymorphisms that modulate a variety of traits. Many phenotypes are now associated with enough mapping data that meta-analysis could help refine locations of known QTLs and detect many novel QTLs. We describe a simple approach to combining QTL mapping results for multiple studies and demonstrate its utility using two hippocampus weight loci. Using data taken from two populations, a recombinant inbred strain set and an advanced intercross population we demonstrate considerable improvements in significance and resolution for both loci. 1-LOD support intervals were improved 51% for Hipp1a and 37% for Hipp9a. We first generate locus-wise permuted P-values for association with the phenotype from multiple maps, which can be done using a permutation method appropriate to each population. These results are then assigned to defined physical positions by interpolation between markers with known physical and genetic positions. We then use Fisher's combination test to combine position-by-position probabilities among experiments. Finally, we calculate genome-wide combined P-values by generating locus-specific P-values for each permuted map for each experiment. These permuted maps are then sampled with replacement and combined. The distribution of best locus-specific P-values for each combined map is the null distribution of genome-wide adjusted P-values. Our approach is applicable to a wide variety of segregating and non-segregating mapping populations, facilitates rapid refinement of physical QTL position, is complementary to other QTL fine mapping methods, and provides an appropriate genome-wide criterion of significance for combined mapping results.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0001036</identifier><identifier>PMID: 17940600</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bioinformatics ; Biometrics ; Chromosome Mapping ; Crosses, Genetic ; Data processing ; Datasets ; Gene expression ; Gene loci ; Gene mapping ; Genetic aspects ; Genetic Linkage ; Genetic polymorphisms ; Genetic research ; Genetics ; Genetics and Genomics/Bioinformatics ; Genetics and Genomics/Complex Traits ; Genome ; Genomes ; Genomics ; Hippocampus - metabolism ; Humans ; Inbreeding ; Interpolation ; Intervals ; Laboratories ; Loci ; Mapping ; Methods ; Models, Biological ; Models, Genetic ; Neurobiology ; Neurosciences ; Phenotype ; Polymorphism, Genetic ; Populations ; Quantitative genetics ; Quantitative Trait Loci ; Science ; Software</subject><ispartof>PloS one, 2007-10, Vol.2 (10), p.e1036-e1036</ispartof><rights>COPYRIGHT 2007 Public Library of Science</rights><rights>2007 Peirce et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Peirce et al. 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c714t-fc978609816077dc2fe340038c12a03c2326fe13200456bda08f14548fda63963</citedby><cites>FETCH-LOGICAL-c714t-fc978609816077dc2fe340038c12a03c2326fe13200456bda08f14548fda63963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2001185/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2001185/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17940600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zaas, Aimee</contributor><creatorcontrib>Peirce, Jeremy L</creatorcontrib><creatorcontrib>Broman, Karl W</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Williams, Robert W</creatorcontrib><title>A simple method for combining genetic mapping data from multiple crosses and experimental designs</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Over the past decade many linkage studies have defined chromosomal intervals containing polymorphisms that modulate a variety of traits. Many phenotypes are now associated with enough mapping data that meta-analysis could help refine locations of known QTLs and detect many novel QTLs. We describe a simple approach to combining QTL mapping results for multiple studies and demonstrate its utility using two hippocampus weight loci. Using data taken from two populations, a recombinant inbred strain set and an advanced intercross population we demonstrate considerable improvements in significance and resolution for both loci. 1-LOD support intervals were improved 51% for Hipp1a and 37% for Hipp9a. We first generate locus-wise permuted P-values for association with the phenotype from multiple maps, which can be done using a permutation method appropriate to each population. These results are then assigned to defined physical positions by interpolation between markers with known physical and genetic positions. We then use Fisher's combination test to combine position-by-position probabilities among experiments. Finally, we calculate genome-wide combined P-values by generating locus-specific P-values for each permuted map for each experiment. These permuted maps are then sampled with replacement and combined. The distribution of best locus-specific P-values for each combined map is the null distribution of genome-wide adjusted P-values. Our approach is applicable to a wide variety of segregating and non-segregating mapping populations, facilitates rapid refinement of physical QTL position, is complementary to other QTL fine mapping methods, and provides an appropriate genome-wide criterion of significance for combined mapping results.</description><subject>Analysis</subject><subject>Bioinformatics</subject><subject>Biometrics</subject><subject>Chromosome Mapping</subject><subject>Crosses, Genetic</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Gene expression</subject><subject>Gene loci</subject><subject>Gene mapping</subject><subject>Genetic aspects</subject><subject>Genetic Linkage</subject><subject>Genetic polymorphisms</subject><subject>Genetic research</subject><subject>Genetics</subject><subject>Genetics and Genomics/Bioinformatics</subject><subject>Genetics and Genomics/Complex Traits</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hippocampus - metabolism</subject><subject>Humans</subject><subject>Inbreeding</subject><subject>Interpolation</subject><subject>Intervals</subject><subject>Laboratories</subject><subject>Loci</subject><subject>Mapping</subject><subject>Methods</subject><subject>Models, Biological</subject><subject>Models, Genetic</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Phenotype</subject><subject>Polymorphism, Genetic</subject><subject>Populations</subject><subject>Quantitative genetics</subject><subject>Quantitative Trait Loci</subject><subject>Science</subject><subject>Software</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLwoIXM558NGlvFobFj4GFBb9uQ5qedLK0TW1aWf-96U7VGXFBetE2fc6b877NSZLnBNaESfLmxk9Dp5t17ztcAwABJh4kp6RgdCUosIcHzyfJkxBuADKWC_E4OSGy4CAAThO9SYNr-wbTFsedr1Lrh9T4tnSd6-q0xg5HZ9JW9_38XulRp3bwbdpOzejmOjP4EDCkuqtSvO1xcC12o27SCoOru_A0eWR1E_DZcj9Lvrx7-_nyw-rq-v32cnO1MpLwcWVNIXMBRU4ESFkZapFxAJYbQjUwQxkVFgmjADwTZaUht4RnPLeVFqwQ7Cx5udftGx_Ukk5QpMiAccpkcS9B84JIoDmJxHZPVF7fqD5a0cMP5bVTdwt-qJUeYh4NKrCaFTmUmrOM67wsS0QikMTGJZEWotbFsttUtliZGMqgmyPR4y-d26naf1fRISF5FgXOF4HBf5swjKp1wWDT6A79FJTIOXAp551e_QX-2_391GEC6z1V62jSddbH3ky8KmydiUfNuri-4ZJSDkUxd_n6qCAyI96OtZ5CUNtPH_-fvf56zJ4fsDvUzbgLvplG57twDPI9eHcQB7S_Iyag5kn55VPNk6KWSYllLw5_z5-iZTTYT_laDGg</recordid><startdate>20071017</startdate><enddate>20071017</enddate><creator>Peirce, Jeremy L</creator><creator>Broman, Karl W</creator><creator>Lu, Lu</creator><creator>Williams, Robert W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20071017</creationdate><title>A simple method for combining genetic mapping data from multiple crosses and experimental designs</title><author>Peirce, Jeremy L ; Broman, Karl W ; Lu, Lu ; Williams, Robert W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c714t-fc978609816077dc2fe340038c12a03c2326fe13200456bda08f14548fda63963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analysis</topic><topic>Bioinformatics</topic><topic>Biometrics</topic><topic>Chromosome Mapping</topic><topic>Crosses, Genetic</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Gene expression</topic><topic>Gene loci</topic><topic>Gene mapping</topic><topic>Genetic aspects</topic><topic>Genetic Linkage</topic><topic>Genetic polymorphisms</topic><topic>Genetic research</topic><topic>Genetics</topic><topic>Genetics and Genomics/Bioinformatics</topic><topic>Genetics and Genomics/Complex Traits</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hippocampus - metabolism</topic><topic>Humans</topic><topic>Inbreeding</topic><topic>Interpolation</topic><topic>Intervals</topic><topic>Laboratories</topic><topic>Loci</topic><topic>Mapping</topic><topic>Methods</topic><topic>Models, Biological</topic><topic>Models, Genetic</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Phenotype</topic><topic>Polymorphism, Genetic</topic><topic>Populations</topic><topic>Quantitative genetics</topic><topic>Quantitative Trait Loci</topic><topic>Science</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peirce, Jeremy L</creatorcontrib><creatorcontrib>Broman, Karl W</creatorcontrib><creatorcontrib>Lu, Lu</creatorcontrib><creatorcontrib>Williams, Robert W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peirce, Jeremy L</au><au>Broman, Karl W</au><au>Lu, Lu</au><au>Williams, Robert W</au><au>Zaas, Aimee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simple method for combining genetic mapping data from multiple crosses and experimental designs</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2007-10-17</date><risdate>2007</risdate><volume>2</volume><issue>10</issue><spage>e1036</spage><epage>e1036</epage><pages>e1036-e1036</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Over the past decade many linkage studies have defined chromosomal intervals containing polymorphisms that modulate a variety of traits. Many phenotypes are now associated with enough mapping data that meta-analysis could help refine locations of known QTLs and detect many novel QTLs. We describe a simple approach to combining QTL mapping results for multiple studies and demonstrate its utility using two hippocampus weight loci. Using data taken from two populations, a recombinant inbred strain set and an advanced intercross population we demonstrate considerable improvements in significance and resolution for both loci. 1-LOD support intervals were improved 51% for Hipp1a and 37% for Hipp9a. We first generate locus-wise permuted P-values for association with the phenotype from multiple maps, which can be done using a permutation method appropriate to each population. These results are then assigned to defined physical positions by interpolation between markers with known physical and genetic positions. We then use Fisher's combination test to combine position-by-position probabilities among experiments. Finally, we calculate genome-wide combined P-values by generating locus-specific P-values for each permuted map for each experiment. These permuted maps are then sampled with replacement and combined. The distribution of best locus-specific P-values for each combined map is the null distribution of genome-wide adjusted P-values. Our approach is applicable to a wide variety of segregating and non-segregating mapping populations, facilitates rapid refinement of physical QTL position, is complementary to other QTL fine mapping methods, and provides an appropriate genome-wide criterion of significance for combined mapping results.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>17940600</pmid><doi>10.1371/journal.pone.0001036</doi><tpages>e1036</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2007-10, Vol.2 (10), p.e1036-e1036
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1950342379
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Bioinformatics
Biometrics
Chromosome Mapping
Crosses, Genetic
Data processing
Datasets
Gene expression
Gene loci
Gene mapping
Genetic aspects
Genetic Linkage
Genetic polymorphisms
Genetic research
Genetics
Genetics and Genomics/Bioinformatics
Genetics and Genomics/Complex Traits
Genome
Genomes
Genomics
Hippocampus - metabolism
Humans
Inbreeding
Interpolation
Intervals
Laboratories
Loci
Mapping
Methods
Models, Biological
Models, Genetic
Neurobiology
Neurosciences
Phenotype
Polymorphism, Genetic
Populations
Quantitative genetics
Quantitative Trait Loci
Science
Software
title A simple method for combining genetic mapping data from multiple crosses and experimental designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simple%20method%20for%20combining%20genetic%20mapping%20data%20from%20multiple%20crosses%20and%20experimental%20designs&rft.jtitle=PloS%20one&rft.au=Peirce,%20Jeremy%20L&rft.date=2007-10-17&rft.volume=2&rft.issue=10&rft.spage=e1036&rft.epage=e1036&rft.pages=e1036-e1036&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0001036&rft_dat=%3Cgale_plos_%3EA472240995%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289170281&rft_id=info:pmid/17940600&rft_galeid=A472240995&rft_doaj_id=oai_doaj_org_article_0fa3980ba4354a8bbbee16e1c2f717f0&rfr_iscdi=true