High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity
Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action...
Gespeichert in:
Veröffentlicht in: | PloS one 2007-10, Vol.2 (10), p.e1073 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e1073 |
container_title | PloS one |
container_volume | 2 |
creator | Cornelisse, L Niels van Elburg, Ronald A J Meredith, Rhiannon M Yuste, Rafael Mansvelder, Huibert D |
description | Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action potentials (AP) are almost never measured due to technical limitations, but they could be crucial for synaptic plasticity. With high-speed, precisely-targeted, two-photon point imaging we measured both calcium rise and decay kinetics in spines and secondary dendrites in neocortical pyramidal neurons. We found that both rise and decay kinetics of changes in calcium-indicator fluorescence are about twice as fast in spines. During AP trains, spine calcium changes follow each AP, but not in dendrites. Apart from the higher surface-to-volume ratio (SVR), we observed that neocortical dendritic spines have a markedly smaller endogenous buffer capacity with respect to their parental dendrites. Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity. |
doi_str_mv | 10.1371/journal.pone.0001073 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1950341841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472239649</galeid><doaj_id>oai_doaj_org_article_8462090b363e44cca5b8157a7029284a</doaj_id><sourcerecordid>A472239649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c749t-41d938e110932761c5c0263d130781794bc9fc4390b494d8a44922c1e1b17ed3</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBEQkLiosVf-TAXSNMErNKkSTBxazm2k7qkdmY7bL3ll3NKw2gvKqFcJLGf99jva58se4nRHNMKv1_5MTjZzwfvzBwhhFFFH2WnmFMyKwmij_e-T7JnMa4QKmhdlk-zE1zxoiJFcZr9urTdMo-DMTpPd342LH3yLrdr2VnX5b7NleyVHde53ji5tirm1uXaOB1ssgqU1pn4IVfeRXM7GqdMzFsfdhMP4h_wk7Zi6XTejG1rAswNUtm0eZ49aWUfzYvpfZbdfP50c3E5u7r-srg4v5qpivE0Y1hzWhuMEbiqSqwKhUhJNaaoqsEQaxRvFaMcNYwzXUvGOCEKG9zgymh6lr3elR16H8WUXhSYF4gyXDN8lCA1xyWjJQFisSO0lysxBIgpbISXVvwZ8KETMoDP3oiaQfCwF1pSw5hSsmhqXFSyQoSTmkmo9XFabWzWRivjUpD9QdHDGWeXovM_BZwno0UBBd5MBYKH5GM6Yuo4tW9svqM6CXu3rvWwpIJHGzhzuGGthfFzVhFCeck4CN4dCIBJ5j51coxRLL59_X_2-vsh-3aPXRrZp2X0_ZgsXLBDkO1AFXyMwbQPyWEktg3y16fYNoiYGgRkr_ZT_yeaOoL-Bo8VCgc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289164362</pqid></control><display><type>article</type><title>High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cornelisse, L Niels ; van Elburg, Ronald A J ; Meredith, Rhiannon M ; Yuste, Rafael ; Mansvelder, Huibert D</creator><contributor>Mei, Lin</contributor><creatorcontrib>Cornelisse, L Niels ; van Elburg, Ronald A J ; Meredith, Rhiannon M ; Yuste, Rafael ; Mansvelder, Huibert D ; Mei, Lin</creatorcontrib><description>Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action potentials (AP) are almost never measured due to technical limitations, but they could be crucial for synaptic plasticity. With high-speed, precisely-targeted, two-photon point imaging we measured both calcium rise and decay kinetics in spines and secondary dendrites in neocortical pyramidal neurons. We found that both rise and decay kinetics of changes in calcium-indicator fluorescence are about twice as fast in spines. During AP trains, spine calcium changes follow each AP, but not in dendrites. Apart from the higher surface-to-volume ratio (SVR), we observed that neocortical dendritic spines have a markedly smaller endogenous buffer capacity with respect to their parental dendrites. Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0001073</identifier><identifier>PMID: 17957255</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action Potentials ; Animals ; Biochemistry/Cell Signaling and Trafficking Structures ; Biochemistry/Theory and Simulation ; Biophysics/Cell Signaling and Trafficking Structures ; Biophysics/Theory and Simulation ; Brain - metabolism ; Buffers ; Calcium ; Calcium - chemistry ; Calcium binding proteins ; Calcium buffering ; Calcium content ; Calcium imaging ; Calcium influx ; Calcium sequestration ; Calcium Signaling ; Calcium signalling ; Calcium-binding protein ; Calmodulin ; Calmodulin - chemistry ; Cell Biology/Neuronal and Glial Cell Biology ; Cell Biology/Neuronal Signaling Mechanisms ; Computational Biology/Computational Neuroscience ; Computer simulation ; Decay ; Dendrites ; Dendritic spines ; Dendritic Spines - pathology ; Extrusion rate ; Fluorescence ; Kinetics ; Mice ; Mice, Inbred C57BL ; Microscopy, Fluorescence - methods ; Models, Biological ; Models, Theoretical ; Neocortex ; Neuroscience/Neuronal and Glial Cell Biology ; Neuroscience/Neuronal Signaling Mechanisms ; Neuroscience/Theoretical Neuroscience ; Photons ; Plasticity ; Pyramidal cells ; Spine ; Synapses - pathology ; Synaptic plasticity ; Trends</subject><ispartof>PloS one, 2007-10, Vol.2 (10), p.e1073</ispartof><rights>COPYRIGHT 2007 Public Library of Science</rights><rights>2007 Cornelisse et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Cornelisse et al. 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c749t-41d938e110932761c5c0263d130781794bc9fc4390b494d8a44922c1e1b17ed3</citedby><cites>FETCH-LOGICAL-c749t-41d938e110932761c5c0263d130781794bc9fc4390b494d8a44922c1e1b17ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2034355/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2034355/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17957255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mei, Lin</contributor><creatorcontrib>Cornelisse, L Niels</creatorcontrib><creatorcontrib>van Elburg, Ronald A J</creatorcontrib><creatorcontrib>Meredith, Rhiannon M</creatorcontrib><creatorcontrib>Yuste, Rafael</creatorcontrib><creatorcontrib>Mansvelder, Huibert D</creatorcontrib><title>High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action potentials (AP) are almost never measured due to technical limitations, but they could be crucial for synaptic plasticity. With high-speed, precisely-targeted, two-photon point imaging we measured both calcium rise and decay kinetics in spines and secondary dendrites in neocortical pyramidal neurons. We found that both rise and decay kinetics of changes in calcium-indicator fluorescence are about twice as fast in spines. During AP trains, spine calcium changes follow each AP, but not in dendrites. Apart from the higher surface-to-volume ratio (SVR), we observed that neocortical dendritic spines have a markedly smaller endogenous buffer capacity with respect to their parental dendrites. Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Biochemistry/Cell Signaling and Trafficking Structures</subject><subject>Biochemistry/Theory and Simulation</subject><subject>Biophysics/Cell Signaling and Trafficking Structures</subject><subject>Biophysics/Theory and Simulation</subject><subject>Brain - metabolism</subject><subject>Buffers</subject><subject>Calcium</subject><subject>Calcium - chemistry</subject><subject>Calcium binding proteins</subject><subject>Calcium buffering</subject><subject>Calcium content</subject><subject>Calcium imaging</subject><subject>Calcium influx</subject><subject>Calcium sequestration</subject><subject>Calcium Signaling</subject><subject>Calcium signalling</subject><subject>Calcium-binding protein</subject><subject>Calmodulin</subject><subject>Calmodulin - chemistry</subject><subject>Cell Biology/Neuronal and Glial Cell Biology</subject><subject>Cell Biology/Neuronal Signaling Mechanisms</subject><subject>Computational Biology/Computational Neuroscience</subject><subject>Computer simulation</subject><subject>Decay</subject><subject>Dendrites</subject><subject>Dendritic spines</subject><subject>Dendritic Spines - pathology</subject><subject>Extrusion rate</subject><subject>Fluorescence</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Models, Biological</subject><subject>Models, Theoretical</subject><subject>Neocortex</subject><subject>Neuroscience/Neuronal and Glial Cell Biology</subject><subject>Neuroscience/Neuronal Signaling Mechanisms</subject><subject>Neuroscience/Theoretical Neuroscience</subject><subject>Photons</subject><subject>Plasticity</subject><subject>Pyramidal cells</subject><subject>Spine</subject><subject>Synapses - pathology</subject><subject>Synaptic plasticity</subject><subject>Trends</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBEQkLiosVf-TAXSNMErNKkSTBxazm2k7qkdmY7bL3ll3NKw2gvKqFcJLGf99jva58se4nRHNMKv1_5MTjZzwfvzBwhhFFFH2WnmFMyKwmij_e-T7JnMa4QKmhdlk-zE1zxoiJFcZr9urTdMo-DMTpPd342LH3yLrdr2VnX5b7NleyVHde53ji5tirm1uXaOB1ssgqU1pn4IVfeRXM7GqdMzFsfdhMP4h_wk7Zi6XTejG1rAswNUtm0eZ49aWUfzYvpfZbdfP50c3E5u7r-srg4v5qpivE0Y1hzWhuMEbiqSqwKhUhJNaaoqsEQaxRvFaMcNYwzXUvGOCEKG9zgymh6lr3elR16H8WUXhSYF4gyXDN8lCA1xyWjJQFisSO0lysxBIgpbISXVvwZ8KETMoDP3oiaQfCwF1pSw5hSsmhqXFSyQoSTmkmo9XFabWzWRivjUpD9QdHDGWeXovM_BZwno0UBBd5MBYKH5GM6Yuo4tW9svqM6CXu3rvWwpIJHGzhzuGGthfFzVhFCeck4CN4dCIBJ5j51coxRLL59_X_2-vsh-3aPXRrZp2X0_ZgsXLBDkO1AFXyMwbQPyWEktg3y16fYNoiYGgRkr_ZT_yeaOoL-Bo8VCgc</recordid><startdate>20071024</startdate><enddate>20071024</enddate><creator>Cornelisse, L Niels</creator><creator>van Elburg, Ronald A J</creator><creator>Meredith, Rhiannon M</creator><creator>Yuste, Rafael</creator><creator>Mansvelder, Huibert D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20071024</creationdate><title>High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity</title><author>Cornelisse, L Niels ; van Elburg, Ronald A J ; Meredith, Rhiannon M ; Yuste, Rafael ; Mansvelder, Huibert D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c749t-41d938e110932761c5c0263d130781794bc9fc4390b494d8a44922c1e1b17ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Biochemistry/Cell Signaling and Trafficking Structures</topic><topic>Biochemistry/Theory and Simulation</topic><topic>Biophysics/Cell Signaling and Trafficking Structures</topic><topic>Biophysics/Theory and Simulation</topic><topic>Brain - metabolism</topic><topic>Buffers</topic><topic>Calcium</topic><topic>Calcium - chemistry</topic><topic>Calcium binding proteins</topic><topic>Calcium buffering</topic><topic>Calcium content</topic><topic>Calcium imaging</topic><topic>Calcium influx</topic><topic>Calcium sequestration</topic><topic>Calcium Signaling</topic><topic>Calcium signalling</topic><topic>Calcium-binding protein</topic><topic>Calmodulin</topic><topic>Calmodulin - chemistry</topic><topic>Cell Biology/Neuronal and Glial Cell Biology</topic><topic>Cell Biology/Neuronal Signaling Mechanisms</topic><topic>Computational Biology/Computational Neuroscience</topic><topic>Computer simulation</topic><topic>Decay</topic><topic>Dendrites</topic><topic>Dendritic spines</topic><topic>Dendritic Spines - pathology</topic><topic>Extrusion rate</topic><topic>Fluorescence</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Models, Biological</topic><topic>Models, Theoretical</topic><topic>Neocortex</topic><topic>Neuroscience/Neuronal and Glial Cell Biology</topic><topic>Neuroscience/Neuronal Signaling Mechanisms</topic><topic>Neuroscience/Theoretical Neuroscience</topic><topic>Photons</topic><topic>Plasticity</topic><topic>Pyramidal cells</topic><topic>Spine</topic><topic>Synapses - pathology</topic><topic>Synaptic plasticity</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cornelisse, L Niels</creatorcontrib><creatorcontrib>van Elburg, Ronald A J</creatorcontrib><creatorcontrib>Meredith, Rhiannon M</creatorcontrib><creatorcontrib>Yuste, Rafael</creatorcontrib><creatorcontrib>Mansvelder, Huibert D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cornelisse, L Niels</au><au>van Elburg, Ronald A J</au><au>Meredith, Rhiannon M</au><au>Yuste, Rafael</au><au>Mansvelder, Huibert D</au><au>Mei, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2007-10-24</date><risdate>2007</risdate><volume>2</volume><issue>10</issue><spage>e1073</spage><pages>e1073-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action potentials (AP) are almost never measured due to technical limitations, but they could be crucial for synaptic plasticity. With high-speed, precisely-targeted, two-photon point imaging we measured both calcium rise and decay kinetics in spines and secondary dendrites in neocortical pyramidal neurons. We found that both rise and decay kinetics of changes in calcium-indicator fluorescence are about twice as fast in spines. During AP trains, spine calcium changes follow each AP, but not in dendrites. Apart from the higher surface-to-volume ratio (SVR), we observed that neocortical dendritic spines have a markedly smaller endogenous buffer capacity with respect to their parental dendrites. Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>17957255</pmid><doi>10.1371/journal.pone.0001073</doi><tpages>e1073</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2007-10, Vol.2 (10), p.e1073 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1950341841 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Action Potentials Animals Biochemistry/Cell Signaling and Trafficking Structures Biochemistry/Theory and Simulation Biophysics/Cell Signaling and Trafficking Structures Biophysics/Theory and Simulation Brain - metabolism Buffers Calcium Calcium - chemistry Calcium binding proteins Calcium buffering Calcium content Calcium imaging Calcium influx Calcium sequestration Calcium Signaling Calcium signalling Calcium-binding protein Calmodulin Calmodulin - chemistry Cell Biology/Neuronal and Glial Cell Biology Cell Biology/Neuronal Signaling Mechanisms Computational Biology/Computational Neuroscience Computer simulation Decay Dendrites Dendritic spines Dendritic Spines - pathology Extrusion rate Fluorescence Kinetics Mice Mice, Inbred C57BL Microscopy, Fluorescence - methods Models, Biological Models, Theoretical Neocortex Neuroscience/Neuronal and Glial Cell Biology Neuroscience/Neuronal Signaling Mechanisms Neuroscience/Theoretical Neuroscience Photons Plasticity Pyramidal cells Spine Synapses - pathology Synaptic plasticity Trends |
title | High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T16%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20speed%20two-photon%20imaging%20of%20calcium%20dynamics%20in%20dendritic%20spines:%20consequences%20for%20spine%20calcium%20kinetics%20and%20buffer%20capacity&rft.jtitle=PloS%20one&rft.au=Cornelisse,%20L%20Niels&rft.date=2007-10-24&rft.volume=2&rft.issue=10&rft.spage=e1073&rft.pages=e1073-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0001073&rft_dat=%3Cgale_plos_%3EA472239649%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289164362&rft_id=info:pmid/17957255&rft_galeid=A472239649&rft_doaj_id=oai_doaj_org_article_8462090b363e44cca5b8157a7029284a&rfr_iscdi=true |