Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus)

Determination of seabird diet usually relies on the analysis of stomach-content remains obtained through stomach flushing; this technique is both invasive and logistically difficult. We evaluate the usefulness of DNA-based faecal analysis in a dietary study on chick-rearing macaroni penguins (Eudypt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2007-09, Vol.2 (9), p.e831-e831
Hauptverfasser: Deagle, Bruce E, Gales, Nick J, Evans, Karen, Jarman, Simon N, Robinson, Sarah, Trebilco, Rowan, Hindell, Mark A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e831
container_issue 9
container_start_page e831
container_title PloS one
container_volume 2
creator Deagle, Bruce E
Gales, Nick J
Evans, Karen
Jarman, Simon N
Robinson, Sarah
Trebilco, Rowan
Hindell, Mark A
description Determination of seabird diet usually relies on the analysis of stomach-content remains obtained through stomach flushing; this technique is both invasive and logistically difficult. We evaluate the usefulness of DNA-based faecal analysis in a dietary study on chick-rearing macaroni penguins (Eudyptes chrysolophus) at Heard Island. Conventional stomach-content data was also collected, allowing comparison of the approaches. Prey-specific PCR tests were used to detect dietary DNA in faecal samples and amplified prey DNA was cloned and sequenced. Of the 88 faecal samples collected, 39 contained detectable DNA from one or more of the prey groups targeted with PCR tests. Euphausiid DNA was most commonly detected in the early (guard) stage of chick-rearing, and detection of DNA from the myctophid fish Krefftichthys anderssoni and amphipods became more common in samples collected in the later (crèche) stage. These trends followed those observed in the penguins' stomach contents. In euphausiid-specific clone libraries the proportion of sequences from the two dominant euphausiid prey species (Euphausia vallentini and Thysanoessa macrura) changed over the sampling period; again, this reflected the trend in the stomach content data. Analysis of prey sequences in universal clone libraries revealed a higher diversity of fish prey than identified in the stomachs, but non-fish prey were not well represented. The present study is one of the first to examine the full breadth of a predator's diet using DNA-based faecal analysis. We discuss methodological difficulties encountered and suggest possible refinements. Overall, the ability of the DNA-based approach to detect temporal variation in the diet of macaroni penguins indicates this non-invasive method will be generally useful for monitoring population-level dietary trends in seabirds.
doi_str_mv 10.1371/journal.pone.0000831
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1950182480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472247623</galeid><doaj_id>oai_doaj_org_article_a619eaa6c86a430daf186c6c9b07f721</doaj_id><sourcerecordid>A472247623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c715t-4dd31176c2b87cfad3397c1175251090f870e3e9813094ed8d0039ccb518dca13</originalsourceid><addsrcrecordid>eNqNk92LEzEQwBdRvLP6H4gGBPUeWvOx3WR9EI7j1IODA099DdNkdjfHNuklu2L_e1NbtRUPTB4SZn7zmUxRPGV0xoRkb27CGD30s1XwOKN5KcHuFcesFnxacSru792Pikcp3VA6F6qqHhZHTEq1kR8X6XoY7dr5liSEhYuWWIcDGboYxrYjLXocnCGQI62TSyQ0pAE0mN4SIAYSkrRxQIInSzAQg3dkhb4dnU_k9XlWrQZMxHRxnUIfVt2YTh4XDxroEz7ZnZPiy_vzz2cfp5dXHy7OTi-nRrL5MC2tFYzJyvCFkqYBK0QtTZbM-ZzRmjZKUhRYKyZoXaJVllJRG7OYM2UNMDEpnm_9rvqQ9K5fSbN6TpnipaJ3ElzVrKxKWmXiYkvYADd6Fd0S4loHcPqnIMRWQ8wd6lFDxWoEqIyqoBTUQsNUZSpTL6hsJN_k824XbVws0Rr0Q4T-wOmhxrtOt-HbJuOa5cecFK92DmK4HTENeumSwb4Hj2FMWoqSM86FyuSLv8h_l383td-C2ZZqIVfpfBNyciZvi0tn8u9rXJaflpLzUlZcZIOTA4PMDPh9aGFMSV9cf_p_9urrIftyj-0Q-qHLn2ocXPDpECy3oIkhpYjN7x4zqjfD86tOvRkevRuebPZs_33-GO2mRfwA4oATkA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289146406</pqid></control><display><type>article</type><title>Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Deagle, Bruce E ; Gales, Nick J ; Evans, Karen ; Jarman, Simon N ; Robinson, Sarah ; Trebilco, Rowan ; Hindell, Mark A</creator><contributor>Carter, Dee</contributor><creatorcontrib>Deagle, Bruce E ; Gales, Nick J ; Evans, Karen ; Jarman, Simon N ; Robinson, Sarah ; Trebilco, Rowan ; Hindell, Mark A ; Carter, Dee</creatorcontrib><description>Determination of seabird diet usually relies on the analysis of stomach-content remains obtained through stomach flushing; this technique is both invasive and logistically difficult. We evaluate the usefulness of DNA-based faecal analysis in a dietary study on chick-rearing macaroni penguins (Eudyptes chrysolophus) at Heard Island. Conventional stomach-content data was also collected, allowing comparison of the approaches. Prey-specific PCR tests were used to detect dietary DNA in faecal samples and amplified prey DNA was cloned and sequenced. Of the 88 faecal samples collected, 39 contained detectable DNA from one or more of the prey groups targeted with PCR tests. Euphausiid DNA was most commonly detected in the early (guard) stage of chick-rearing, and detection of DNA from the myctophid fish Krefftichthys anderssoni and amphipods became more common in samples collected in the later (crèche) stage. These trends followed those observed in the penguins' stomach contents. In euphausiid-specific clone libraries the proportion of sequences from the two dominant euphausiid prey species (Euphausia vallentini and Thysanoessa macrura) changed over the sampling period; again, this reflected the trend in the stomach content data. Analysis of prey sequences in universal clone libraries revealed a higher diversity of fish prey than identified in the stomachs, but non-fish prey were not well represented. The present study is one of the first to examine the full breadth of a predator's diet using DNA-based faecal analysis. We discuss methodological difficulties encountered and suggest possible refinements. Overall, the ability of the DNA-based approach to detect temporal variation in the diet of macaroni penguins indicates this non-invasive method will be generally useful for monitoring population-level dietary trends in seabirds.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0000831</identifier><identifier>PMID: 17786203</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amphipoda ; Analysis ; Animal behavior ; Animals ; Aquatic birds ; Base Sequence ; Birds ; Case reports ; Case studies ; Content analysis ; Data processing ; Deoxyribonucleic acid ; Diet ; DNA ; DNA Primers ; Echinodermata ; Ecology ; Ecosystems ; Endangered &amp; extinct species ; Eudyptes chrysolophus ; Feces ; Fish ; Foraging behavior ; Genetic analysis ; Genetic aspects ; Genetic research ; Genetics and Genomics/Population Genetics ; Isopoda ; Longlining (Fisheries) ; Marine ecology ; Nucleotide sequence ; Ostracoda ; Pasta products ; Penguins ; Polymerase chain reaction ; Population ; Prey ; Seabirds ; Spheniscidae - genetics ; Stomach ; Temporal variations ; Thoracica ; Trends ; Zoology</subject><ispartof>PloS one, 2007-09, Vol.2 (9), p.e831-e831</ispartof><rights>COPYRIGHT 2007 Public Library of Science</rights><rights>2007 Deagle et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Deagle et al. 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c715t-4dd31176c2b87cfad3397c1175251090f870e3e9813094ed8d0039ccb518dca13</citedby><cites>FETCH-LOGICAL-c715t-4dd31176c2b87cfad3397c1175251090f870e3e9813094ed8d0039ccb518dca13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1959119/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1959119/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17786203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Carter, Dee</contributor><creatorcontrib>Deagle, Bruce E</creatorcontrib><creatorcontrib>Gales, Nick J</creatorcontrib><creatorcontrib>Evans, Karen</creatorcontrib><creatorcontrib>Jarman, Simon N</creatorcontrib><creatorcontrib>Robinson, Sarah</creatorcontrib><creatorcontrib>Trebilco, Rowan</creatorcontrib><creatorcontrib>Hindell, Mark A</creatorcontrib><title>Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Determination of seabird diet usually relies on the analysis of stomach-content remains obtained through stomach flushing; this technique is both invasive and logistically difficult. We evaluate the usefulness of DNA-based faecal analysis in a dietary study on chick-rearing macaroni penguins (Eudyptes chrysolophus) at Heard Island. Conventional stomach-content data was also collected, allowing comparison of the approaches. Prey-specific PCR tests were used to detect dietary DNA in faecal samples and amplified prey DNA was cloned and sequenced. Of the 88 faecal samples collected, 39 contained detectable DNA from one or more of the prey groups targeted with PCR tests. Euphausiid DNA was most commonly detected in the early (guard) stage of chick-rearing, and detection of DNA from the myctophid fish Krefftichthys anderssoni and amphipods became more common in samples collected in the later (crèche) stage. These trends followed those observed in the penguins' stomach contents. In euphausiid-specific clone libraries the proportion of sequences from the two dominant euphausiid prey species (Euphausia vallentini and Thysanoessa macrura) changed over the sampling period; again, this reflected the trend in the stomach content data. Analysis of prey sequences in universal clone libraries revealed a higher diversity of fish prey than identified in the stomachs, but non-fish prey were not well represented. The present study is one of the first to examine the full breadth of a predator's diet using DNA-based faecal analysis. We discuss methodological difficulties encountered and suggest possible refinements. Overall, the ability of the DNA-based approach to detect temporal variation in the diet of macaroni penguins indicates this non-invasive method will be generally useful for monitoring population-level dietary trends in seabirds.</description><subject>Amphipoda</subject><subject>Analysis</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Aquatic birds</subject><subject>Base Sequence</subject><subject>Birds</subject><subject>Case reports</subject><subject>Case studies</subject><subject>Content analysis</subject><subject>Data processing</subject><subject>Deoxyribonucleic acid</subject><subject>Diet</subject><subject>DNA</subject><subject>DNA Primers</subject><subject>Echinodermata</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Endangered &amp; extinct species</subject><subject>Eudyptes chrysolophus</subject><subject>Feces</subject><subject>Fish</subject><subject>Foraging behavior</subject><subject>Genetic analysis</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetics and Genomics/Population Genetics</subject><subject>Isopoda</subject><subject>Longlining (Fisheries)</subject><subject>Marine ecology</subject><subject>Nucleotide sequence</subject><subject>Ostracoda</subject><subject>Pasta products</subject><subject>Penguins</subject><subject>Polymerase chain reaction</subject><subject>Population</subject><subject>Prey</subject><subject>Seabirds</subject><subject>Spheniscidae - genetics</subject><subject>Stomach</subject><subject>Temporal variations</subject><subject>Thoracica</subject><subject>Trends</subject><subject>Zoology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk92LEzEQwBdRvLP6H4gGBPUeWvOx3WR9EI7j1IODA099DdNkdjfHNuklu2L_e1NbtRUPTB4SZn7zmUxRPGV0xoRkb27CGD30s1XwOKN5KcHuFcesFnxacSru792Pikcp3VA6F6qqHhZHTEq1kR8X6XoY7dr5liSEhYuWWIcDGboYxrYjLXocnCGQI62TSyQ0pAE0mN4SIAYSkrRxQIInSzAQg3dkhb4dnU_k9XlWrQZMxHRxnUIfVt2YTh4XDxroEz7ZnZPiy_vzz2cfp5dXHy7OTi-nRrL5MC2tFYzJyvCFkqYBK0QtTZbM-ZzRmjZKUhRYKyZoXaJVllJRG7OYM2UNMDEpnm_9rvqQ9K5fSbN6TpnipaJ3ElzVrKxKWmXiYkvYADd6Fd0S4loHcPqnIMRWQ8wd6lFDxWoEqIyqoBTUQsNUZSpTL6hsJN_k824XbVws0Rr0Q4T-wOmhxrtOt-HbJuOa5cecFK92DmK4HTENeumSwb4Hj2FMWoqSM86FyuSLv8h_l383td-C2ZZqIVfpfBNyciZvi0tn8u9rXJaflpLzUlZcZIOTA4PMDPh9aGFMSV9cf_p_9urrIftyj-0Q-qHLn2ocXPDpECy3oIkhpYjN7x4zqjfD86tOvRkevRuebPZs_33-GO2mRfwA4oATkA</recordid><startdate>20070905</startdate><enddate>20070905</enddate><creator>Deagle, Bruce E</creator><creator>Gales, Nick J</creator><creator>Evans, Karen</creator><creator>Jarman, Simon N</creator><creator>Robinson, Sarah</creator><creator>Trebilco, Rowan</creator><creator>Hindell, Mark A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20070905</creationdate><title>Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus)</title><author>Deagle, Bruce E ; Gales, Nick J ; Evans, Karen ; Jarman, Simon N ; Robinson, Sarah ; Trebilco, Rowan ; Hindell, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c715t-4dd31176c2b87cfad3397c1175251090f870e3e9813094ed8d0039ccb518dca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amphipoda</topic><topic>Analysis</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Aquatic birds</topic><topic>Base Sequence</topic><topic>Birds</topic><topic>Case reports</topic><topic>Case studies</topic><topic>Content analysis</topic><topic>Data processing</topic><topic>Deoxyribonucleic acid</topic><topic>Diet</topic><topic>DNA</topic><topic>DNA Primers</topic><topic>Echinodermata</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Endangered &amp; extinct species</topic><topic>Eudyptes chrysolophus</topic><topic>Feces</topic><topic>Fish</topic><topic>Foraging behavior</topic><topic>Genetic analysis</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetics and Genomics/Population Genetics</topic><topic>Isopoda</topic><topic>Longlining (Fisheries)</topic><topic>Marine ecology</topic><topic>Nucleotide sequence</topic><topic>Ostracoda</topic><topic>Pasta products</topic><topic>Penguins</topic><topic>Polymerase chain reaction</topic><topic>Population</topic><topic>Prey</topic><topic>Seabirds</topic><topic>Spheniscidae - genetics</topic><topic>Stomach</topic><topic>Temporal variations</topic><topic>Thoracica</topic><topic>Trends</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deagle, Bruce E</creatorcontrib><creatorcontrib>Gales, Nick J</creatorcontrib><creatorcontrib>Evans, Karen</creatorcontrib><creatorcontrib>Jarman, Simon N</creatorcontrib><creatorcontrib>Robinson, Sarah</creatorcontrib><creatorcontrib>Trebilco, Rowan</creatorcontrib><creatorcontrib>Hindell, Mark A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deagle, Bruce E</au><au>Gales, Nick J</au><au>Evans, Karen</au><au>Jarman, Simon N</au><au>Robinson, Sarah</au><au>Trebilco, Rowan</au><au>Hindell, Mark A</au><au>Carter, Dee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2007-09-05</date><risdate>2007</risdate><volume>2</volume><issue>9</issue><spage>e831</spage><epage>e831</epage><pages>e831-e831</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Determination of seabird diet usually relies on the analysis of stomach-content remains obtained through stomach flushing; this technique is both invasive and logistically difficult. We evaluate the usefulness of DNA-based faecal analysis in a dietary study on chick-rearing macaroni penguins (Eudyptes chrysolophus) at Heard Island. Conventional stomach-content data was also collected, allowing comparison of the approaches. Prey-specific PCR tests were used to detect dietary DNA in faecal samples and amplified prey DNA was cloned and sequenced. Of the 88 faecal samples collected, 39 contained detectable DNA from one or more of the prey groups targeted with PCR tests. Euphausiid DNA was most commonly detected in the early (guard) stage of chick-rearing, and detection of DNA from the myctophid fish Krefftichthys anderssoni and amphipods became more common in samples collected in the later (crèche) stage. These trends followed those observed in the penguins' stomach contents. In euphausiid-specific clone libraries the proportion of sequences from the two dominant euphausiid prey species (Euphausia vallentini and Thysanoessa macrura) changed over the sampling period; again, this reflected the trend in the stomach content data. Analysis of prey sequences in universal clone libraries revealed a higher diversity of fish prey than identified in the stomachs, but non-fish prey were not well represented. The present study is one of the first to examine the full breadth of a predator's diet using DNA-based faecal analysis. We discuss methodological difficulties encountered and suggest possible refinements. Overall, the ability of the DNA-based approach to detect temporal variation in the diet of macaroni penguins indicates this non-invasive method will be generally useful for monitoring population-level dietary trends in seabirds.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>17786203</pmid><doi>10.1371/journal.pone.0000831</doi><tpages>e831</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2007-09, Vol.2 (9), p.e831-e831
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1950182480
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amphipoda
Analysis
Animal behavior
Animals
Aquatic birds
Base Sequence
Birds
Case reports
Case studies
Content analysis
Data processing
Deoxyribonucleic acid
Diet
DNA
DNA Primers
Echinodermata
Ecology
Ecosystems
Endangered & extinct species
Eudyptes chrysolophus
Feces
Fish
Foraging behavior
Genetic analysis
Genetic aspects
Genetic research
Genetics and Genomics/Population Genetics
Isopoda
Longlining (Fisheries)
Marine ecology
Nucleotide sequence
Ostracoda
Pasta products
Penguins
Polymerase chain reaction
Population
Prey
Seabirds
Spheniscidae - genetics
Stomach
Temporal variations
Thoracica
Trends
Zoology
title Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studying%20seabird%20diet%20through%20genetic%20analysis%20of%20faeces:%20a%20case%20study%20on%20macaroni%20penguins%20(Eudyptes%20chrysolophus)&rft.jtitle=PloS%20one&rft.au=Deagle,%20Bruce%20E&rft.date=2007-09-05&rft.volume=2&rft.issue=9&rft.spage=e831&rft.epage=e831&rft.pages=e831-e831&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0000831&rft_dat=%3Cgale_plos_%3EA472247623%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289146406&rft_id=info:pmid/17786203&rft_galeid=A472247623&rft_doaj_id=oai_doaj_org_article_a619eaa6c86a430daf186c6c9b07f721&rfr_iscdi=true