Wearable sensors objectively measure gait parameters in Parkinson's disease
Distinct gait characteristics like short steps and shuffling gait are prototypical signs commonly observed in Parkinson's disease. Routinely assessed by observation through clinicians, gait is rated as part of categorical clinical scores. There is an increasing need to provide quantitative meas...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-10, Vol.12 (10), p.e0183989-e0183989 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0183989 |
---|---|
container_issue | 10 |
container_start_page | e0183989 |
container_title | PloS one |
container_volume | 12 |
creator | Schlachetzki, Johannes C M Barth, Jens Marxreiter, Franz Gossler, Julia Kohl, Zacharias Reinfelder, Samuel Gassner, Heiko Aminian, Kamiar Eskofier, Bjoern M Winkler, Jürgen Klucken, Jochen |
description | Distinct gait characteristics like short steps and shuffling gait are prototypical signs commonly observed in Parkinson's disease. Routinely assessed by observation through clinicians, gait is rated as part of categorical clinical scores. There is an increasing need to provide quantitative measurements of gait, e.g. to provide detailed information about disease progression. Recently, we developed a wearable sensor-based gait analysis system as diagnostic tool that objectively assesses gait parameter in Parkinson's disease without the need of having a specialized gait laboratory. This system consists of inertial sensor units attached laterally to both shoes. The computed target of measures are spatiotemporal gait parameters including stride length and time, stance phase time, heel-strike and toe-off angle, toe clearance, and inter-stride variation from gait sequences. To translate this prototype into medical care, we conducted a cross-sectional study including 190 Parkinson's disease patients and 101 age-matched controls and measured gait characteristics during a 4x10 meter walk at the subjects' preferred speed. To determine intraindividual changes in gait, we monitored the gait characteristics of 63 patients longitudinally. Cross-sectional analysis revealed distinct spatiotemporal gait parameter differences reflecting typical Parkinson's disease gait characteristics including short steps, shuffling gait, and postural instability specific for different disease stages and levels of motor impairment. The longitudinal analysis revealed that gait parameters were sensitive to changes by mirroring the progressive nature of Parkinson's disease and corresponded to physician ratings. Taken together, we successfully show that wearable sensor-based gait analysis reaches clinical applicability providing a high biomechanical resolution for gait impairment in Parkinson's disease. These data demonstrate the feasibility and applicability of objective wearable sensor-based gait measurement in Parkinson's disease reaching high technological readiness levels for both, large scale clinical studies and individual patient care. |
doi_str_mv | 10.1371/journal.pone.0183989 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1950120278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A509130642</galeid><doaj_id>oai_doaj_org_article_83d1b789453f4ea88897e357f0733732</doaj_id><sourcerecordid>A509130642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-a170de3cf2b65853928ff1fb43cf06d1391ea34925233111071bf5e0ce3c94ac3</originalsourceid><addsrcrecordid>eNqNkllv1DAUhSMEoqXwDxBEQmJ5mMFLFvsFqapYRlQqYn20HOc648GJB9up6L_Hw6TVBPUB5cHR9XeOfa9Plj3GaIlpjV9v3OgHaZdbN8ASYUY543eyY8wpWVQE0bsH_0fZgxA2CJWUVdX97IhwRBDC5Dj7-AOkl42FPMAQnA-5azagorkEe5X3IMPoIe-kifk2gT1ESIwZ8k_S_zRJMbwIeWtCAuFhdk9LG-DRtJ5k3969_Xr2YXF-8X51dnq-UBUncSFxjVqgSpOmKllJOWFaY90UqYSqFlOOQdKCk5JQijFGNW50CUglDS-koifZ073v1rogpjkEgXmZWkKkZolY7YnWyY3YetNLfyWcNOJvwflOSB-NsiAYbXFTM16UVBcgGWO8BlrWGtWU1pQkrzfTaWPTQ6tgiF7amel8ZzBr0blLUVa0QjVKBi8nA-9-jRCi6E1QYK0cwI37exeYFQwn9Nk_6O3dTVQnUwNm0C6dq3am4rREHFNUFbt7L2-h0tdCb1QKjTapPhO8mgkSE-F37OQYglh9-fz_7MX3Ofv8gF2DtHEdnB2jcUOYg8UeVN6F4EHfDBkjscv89TTELvNiynySPTl8oBvRdcjpH5nr-ik</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950120278</pqid></control><display><type>article</type><title>Wearable sensors objectively measure gait parameters in Parkinson's disease</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Schlachetzki, Johannes C M ; Barth, Jens ; Marxreiter, Franz ; Gossler, Julia ; Kohl, Zacharias ; Reinfelder, Samuel ; Gassner, Heiko ; Aminian, Kamiar ; Eskofier, Bjoern M ; Winkler, Jürgen ; Klucken, Jochen</creator><creatorcontrib>Schlachetzki, Johannes C M ; Barth, Jens ; Marxreiter, Franz ; Gossler, Julia ; Kohl, Zacharias ; Reinfelder, Samuel ; Gassner, Heiko ; Aminian, Kamiar ; Eskofier, Bjoern M ; Winkler, Jürgen ; Klucken, Jochen</creatorcontrib><description>Distinct gait characteristics like short steps and shuffling gait are prototypical signs commonly observed in Parkinson's disease. Routinely assessed by observation through clinicians, gait is rated as part of categorical clinical scores. There is an increasing need to provide quantitative measurements of gait, e.g. to provide detailed information about disease progression. Recently, we developed a wearable sensor-based gait analysis system as diagnostic tool that objectively assesses gait parameter in Parkinson's disease without the need of having a specialized gait laboratory. This system consists of inertial sensor units attached laterally to both shoes. The computed target of measures are spatiotemporal gait parameters including stride length and time, stance phase time, heel-strike and toe-off angle, toe clearance, and inter-stride variation from gait sequences. To translate this prototype into medical care, we conducted a cross-sectional study including 190 Parkinson's disease patients and 101 age-matched controls and measured gait characteristics during a 4x10 meter walk at the subjects' preferred speed. To determine intraindividual changes in gait, we monitored the gait characteristics of 63 patients longitudinally. Cross-sectional analysis revealed distinct spatiotemporal gait parameter differences reflecting typical Parkinson's disease gait characteristics including short steps, shuffling gait, and postural instability specific for different disease stages and levels of motor impairment. The longitudinal analysis revealed that gait parameters were sensitive to changes by mirroring the progressive nature of Parkinson's disease and corresponded to physician ratings. Taken together, we successfully show that wearable sensor-based gait analysis reaches clinical applicability providing a high biomechanical resolution for gait impairment in Parkinson's disease. These data demonstrate the feasibility and applicability of objective wearable sensor-based gait measurement in Parkinson's disease reaching high technological readiness levels for both, large scale clinical studies and individual patient care.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0183989</identifier><identifier>PMID: 29020012</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Analysis ; Biology and Life Sciences ; Biomechanical engineering ; Biomechanics ; Care and treatment ; Case-Control Studies ; Computer science ; Cross-sectional studies ; Diagnosis ; Diagnostic software ; Diagnostic systems ; Disease control ; Feasibility studies ; Female ; Fractals ; Gait ; Hospitals ; Humans ; Impairment ; Inertial sensing devices ; Laboratories ; Longitudinal Studies ; Male ; Management ; Measurement ; Medical care ; Medicine and Health Sciences ; Middle Aged ; Monitoring, Physiologic - instrumentation ; Neurology ; Parameter sensitivity ; Parkinson disease ; Parkinson Disease - physiopathology ; Parkinson's disease ; Patients ; Pattern recognition ; People and Places ; Physical Sciences ; Postural Balance ; Posture ; Research and Analysis Methods ; Sensors ; Stability ; Time Factors ; Toe ; Wearable technology</subject><ispartof>PloS one, 2017-10, Vol.12 (10), p.e0183989-e0183989</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Schlachetzki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Schlachetzki et al 2017 Schlachetzki et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-a170de3cf2b65853928ff1fb43cf06d1391ea34925233111071bf5e0ce3c94ac3</citedby><cites>FETCH-LOGICAL-c692t-a170de3cf2b65853928ff1fb43cf06d1391ea34925233111071bf5e0ce3c94ac3</cites><orcidid>0000-0002-7801-9743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636070/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636070/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29020012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schlachetzki, Johannes C M</creatorcontrib><creatorcontrib>Barth, Jens</creatorcontrib><creatorcontrib>Marxreiter, Franz</creatorcontrib><creatorcontrib>Gossler, Julia</creatorcontrib><creatorcontrib>Kohl, Zacharias</creatorcontrib><creatorcontrib>Reinfelder, Samuel</creatorcontrib><creatorcontrib>Gassner, Heiko</creatorcontrib><creatorcontrib>Aminian, Kamiar</creatorcontrib><creatorcontrib>Eskofier, Bjoern M</creatorcontrib><creatorcontrib>Winkler, Jürgen</creatorcontrib><creatorcontrib>Klucken, Jochen</creatorcontrib><title>Wearable sensors objectively measure gait parameters in Parkinson's disease</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Distinct gait characteristics like short steps and shuffling gait are prototypical signs commonly observed in Parkinson's disease. Routinely assessed by observation through clinicians, gait is rated as part of categorical clinical scores. There is an increasing need to provide quantitative measurements of gait, e.g. to provide detailed information about disease progression. Recently, we developed a wearable sensor-based gait analysis system as diagnostic tool that objectively assesses gait parameter in Parkinson's disease without the need of having a specialized gait laboratory. This system consists of inertial sensor units attached laterally to both shoes. The computed target of measures are spatiotemporal gait parameters including stride length and time, stance phase time, heel-strike and toe-off angle, toe clearance, and inter-stride variation from gait sequences. To translate this prototype into medical care, we conducted a cross-sectional study including 190 Parkinson's disease patients and 101 age-matched controls and measured gait characteristics during a 4x10 meter walk at the subjects' preferred speed. To determine intraindividual changes in gait, we monitored the gait characteristics of 63 patients longitudinally. Cross-sectional analysis revealed distinct spatiotemporal gait parameter differences reflecting typical Parkinson's disease gait characteristics including short steps, shuffling gait, and postural instability specific for different disease stages and levels of motor impairment. The longitudinal analysis revealed that gait parameters were sensitive to changes by mirroring the progressive nature of Parkinson's disease and corresponded to physician ratings. Taken together, we successfully show that wearable sensor-based gait analysis reaches clinical applicability providing a high biomechanical resolution for gait impairment in Parkinson's disease. These data demonstrate the feasibility and applicability of objective wearable sensor-based gait measurement in Parkinson's disease reaching high technological readiness levels for both, large scale clinical studies and individual patient care.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Biomechanical engineering</subject><subject>Biomechanics</subject><subject>Care and treatment</subject><subject>Case-Control Studies</subject><subject>Computer science</subject><subject>Cross-sectional studies</subject><subject>Diagnosis</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Disease control</subject><subject>Feasibility studies</subject><subject>Female</subject><subject>Fractals</subject><subject>Gait</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Impairment</subject><subject>Inertial sensing devices</subject><subject>Laboratories</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>Management</subject><subject>Measurement</subject><subject>Medical care</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Monitoring, Physiologic - instrumentation</subject><subject>Neurology</subject><subject>Parameter sensitivity</subject><subject>Parkinson disease</subject><subject>Parkinson Disease - physiopathology</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>Pattern recognition</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Postural Balance</subject><subject>Posture</subject><subject>Research and Analysis Methods</subject><subject>Sensors</subject><subject>Stability</subject><subject>Time Factors</subject><subject>Toe</subject><subject>Wearable technology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkllv1DAUhSMEoqXwDxBEQmJ5mMFLFvsFqapYRlQqYn20HOc648GJB9up6L_Hw6TVBPUB5cHR9XeOfa9Plj3GaIlpjV9v3OgHaZdbN8ASYUY543eyY8wpWVQE0bsH_0fZgxA2CJWUVdX97IhwRBDC5Dj7-AOkl42FPMAQnA-5azagorkEe5X3IMPoIe-kifk2gT1ESIwZ8k_S_zRJMbwIeWtCAuFhdk9LG-DRtJ5k3969_Xr2YXF-8X51dnq-UBUncSFxjVqgSpOmKllJOWFaY90UqYSqFlOOQdKCk5JQijFGNW50CUglDS-koifZ073v1rogpjkEgXmZWkKkZolY7YnWyY3YetNLfyWcNOJvwflOSB-NsiAYbXFTM16UVBcgGWO8BlrWGtWU1pQkrzfTaWPTQ6tgiF7amel8ZzBr0blLUVa0QjVKBi8nA-9-jRCi6E1QYK0cwI37exeYFQwn9Nk_6O3dTVQnUwNm0C6dq3am4rREHFNUFbt7L2-h0tdCb1QKjTapPhO8mgkSE-F37OQYglh9-fz_7MX3Ofv8gF2DtHEdnB2jcUOYg8UeVN6F4EHfDBkjscv89TTELvNiynySPTl8oBvRdcjpH5nr-ik</recordid><startdate>20171011</startdate><enddate>20171011</enddate><creator>Schlachetzki, Johannes C M</creator><creator>Barth, Jens</creator><creator>Marxreiter, Franz</creator><creator>Gossler, Julia</creator><creator>Kohl, Zacharias</creator><creator>Reinfelder, Samuel</creator><creator>Gassner, Heiko</creator><creator>Aminian, Kamiar</creator><creator>Eskofier, Bjoern M</creator><creator>Winkler, Jürgen</creator><creator>Klucken, Jochen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7801-9743</orcidid></search><sort><creationdate>20171011</creationdate><title>Wearable sensors objectively measure gait parameters in Parkinson's disease</title><author>Schlachetzki, Johannes C M ; Barth, Jens ; Marxreiter, Franz ; Gossler, Julia ; Kohl, Zacharias ; Reinfelder, Samuel ; Gassner, Heiko ; Aminian, Kamiar ; Eskofier, Bjoern M ; Winkler, Jürgen ; Klucken, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-a170de3cf2b65853928ff1fb43cf06d1391ea34925233111071bf5e0ce3c94ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Biomechanical engineering</topic><topic>Biomechanics</topic><topic>Care and treatment</topic><topic>Case-Control Studies</topic><topic>Computer science</topic><topic>Cross-sectional studies</topic><topic>Diagnosis</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Disease control</topic><topic>Feasibility studies</topic><topic>Female</topic><topic>Fractals</topic><topic>Gait</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Impairment</topic><topic>Inertial sensing devices</topic><topic>Laboratories</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>Management</topic><topic>Measurement</topic><topic>Medical care</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Monitoring, Physiologic - instrumentation</topic><topic>Neurology</topic><topic>Parameter sensitivity</topic><topic>Parkinson disease</topic><topic>Parkinson Disease - physiopathology</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>Pattern recognition</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Postural Balance</topic><topic>Posture</topic><topic>Research and Analysis Methods</topic><topic>Sensors</topic><topic>Stability</topic><topic>Time Factors</topic><topic>Toe</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlachetzki, Johannes C M</creatorcontrib><creatorcontrib>Barth, Jens</creatorcontrib><creatorcontrib>Marxreiter, Franz</creatorcontrib><creatorcontrib>Gossler, Julia</creatorcontrib><creatorcontrib>Kohl, Zacharias</creatorcontrib><creatorcontrib>Reinfelder, Samuel</creatorcontrib><creatorcontrib>Gassner, Heiko</creatorcontrib><creatorcontrib>Aminian, Kamiar</creatorcontrib><creatorcontrib>Eskofier, Bjoern M</creatorcontrib><creatorcontrib>Winkler, Jürgen</creatorcontrib><creatorcontrib>Klucken, Jochen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlachetzki, Johannes C M</au><au>Barth, Jens</au><au>Marxreiter, Franz</au><au>Gossler, Julia</au><au>Kohl, Zacharias</au><au>Reinfelder, Samuel</au><au>Gassner, Heiko</au><au>Aminian, Kamiar</au><au>Eskofier, Bjoern M</au><au>Winkler, Jürgen</au><au>Klucken, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wearable sensors objectively measure gait parameters in Parkinson's disease</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-10-11</date><risdate>2017</risdate><volume>12</volume><issue>10</issue><spage>e0183989</spage><epage>e0183989</epage><pages>e0183989-e0183989</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Distinct gait characteristics like short steps and shuffling gait are prototypical signs commonly observed in Parkinson's disease. Routinely assessed by observation through clinicians, gait is rated as part of categorical clinical scores. There is an increasing need to provide quantitative measurements of gait, e.g. to provide detailed information about disease progression. Recently, we developed a wearable sensor-based gait analysis system as diagnostic tool that objectively assesses gait parameter in Parkinson's disease without the need of having a specialized gait laboratory. This system consists of inertial sensor units attached laterally to both shoes. The computed target of measures are spatiotemporal gait parameters including stride length and time, stance phase time, heel-strike and toe-off angle, toe clearance, and inter-stride variation from gait sequences. To translate this prototype into medical care, we conducted a cross-sectional study including 190 Parkinson's disease patients and 101 age-matched controls and measured gait characteristics during a 4x10 meter walk at the subjects' preferred speed. To determine intraindividual changes in gait, we monitored the gait characteristics of 63 patients longitudinally. Cross-sectional analysis revealed distinct spatiotemporal gait parameter differences reflecting typical Parkinson's disease gait characteristics including short steps, shuffling gait, and postural instability specific for different disease stages and levels of motor impairment. The longitudinal analysis revealed that gait parameters were sensitive to changes by mirroring the progressive nature of Parkinson's disease and corresponded to physician ratings. Taken together, we successfully show that wearable sensor-based gait analysis reaches clinical applicability providing a high biomechanical resolution for gait impairment in Parkinson's disease. These data demonstrate the feasibility and applicability of objective wearable sensor-based gait measurement in Parkinson's disease reaching high technological readiness levels for both, large scale clinical studies and individual patient care.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29020012</pmid><doi>10.1371/journal.pone.0183989</doi><tpages>e0183989</tpages><orcidid>https://orcid.org/0000-0002-7801-9743</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-10, Vol.12 (10), p.e0183989-e0183989 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1950120278 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Adult Aged Aged, 80 and over Analysis Biology and Life Sciences Biomechanical engineering Biomechanics Care and treatment Case-Control Studies Computer science Cross-sectional studies Diagnosis Diagnostic software Diagnostic systems Disease control Feasibility studies Female Fractals Gait Hospitals Humans Impairment Inertial sensing devices Laboratories Longitudinal Studies Male Management Measurement Medical care Medicine and Health Sciences Middle Aged Monitoring, Physiologic - instrumentation Neurology Parameter sensitivity Parkinson disease Parkinson Disease - physiopathology Parkinson's disease Patients Pattern recognition People and Places Physical Sciences Postural Balance Posture Research and Analysis Methods Sensors Stability Time Factors Toe Wearable technology |
title | Wearable sensors objectively measure gait parameters in Parkinson's disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wearable%20sensors%20objectively%20measure%20gait%20parameters%20in%20Parkinson's%20disease&rft.jtitle=PloS%20one&rft.au=Schlachetzki,%20Johannes%20C%20M&rft.date=2017-10-11&rft.volume=12&rft.issue=10&rft.spage=e0183989&rft.epage=e0183989&rft.pages=e0183989-e0183989&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0183989&rft_dat=%3Cgale_plos_%3EA509130642%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950120278&rft_id=info:pmid/29020012&rft_galeid=A509130642&rft_doaj_id=oai_doaj_org_article_83d1b789453f4ea88897e357f0733732&rfr_iscdi=true |