Experimental rugged fitness landscape in protein sequence space
The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat...
Gespeichert in:
Veröffentlicht in: | PloS one 2006-12, Vol.1 (1), p.e96-e96 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e96 |
---|---|
container_issue | 1 |
container_start_page | e96 |
container_title | PloS one |
container_volume | 1 |
creator | Hayashi, Yuuki Aita, Takuyo Toyota, Hitoshi Husimi, Yuzuru Urabe, Itaru Yomo, Tetsuya |
description | The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat protein D2 domain, which is essential for phage infection. After 20 cycles of random substitution at sites 12-130 of the initial random polypeptide and selection for infectivity, the selected phage showed a 1.7x10(4)-fold increase in infectivity, defined as the number of infected cells per ml of phage suspension. Fitness was defined as the logarithm of infectivity, and we analyzed (1) the dependence of stationary fitness on library size, which increased gradually, and (2) the time course of changes in fitness in transitional phases, based on an original theory regarding the evolutionary dynamics in Kauffman's n-k fitness landscape model. In the landscape model, single mutations at single sites among n sites affect the contribution of k other sites to fitness. Based on the results of these analyses, k was estimated to be 18-24. According to the estimated parameters, the landscape was plotted as a smooth surface up to a relative fitness of 0.4 of the global peak, whereas the landscape had a highly rugged surface with many local peaks above this relative fitness value. Based on the landscapes of these two different surfaces, it appears possible for adaptive walks with only random substitutions to climb with relative ease up to the middle region of the fitness landscape from any primordial or random sequence, whereas an enormous range of sequence diversity is required to climb further up the rugged surface above the middle region. |
doi_str_mv | 10.1371/journal.pone.0000096 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1949663754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A471943087</galeid><doaj_id>oai_doaj_org_article_ca9e86822bc144e2b63aa2683639aa6c</doaj_id><sourcerecordid>A471943087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-34e8e5377aa33fbf345cc68d4d8e7d8b74a2f3df616f35c78a037ad1a3ec29aa3</originalsourceid><addsrcrecordid>eNqNk2-L1DAQxoso3t3qNxAtCAe-2LXJtEn6RjmOUxcODvz3Nsym026WblOTVs5vf1m36q54YPoiIf3Nk3kmmSR5xrIFA8leb9zoO2wXvetoke1GKR4kp6wEPhc8g4cH65PkLIRNlhWghHicnDDJFEiuTpO3V7c9ebulbsA29WPTUJXWdugohLTFrgoGe0ptl_beDRTnQN9G6gyloUdDT5JHNbaBnk7zLPny7urz5Yf59c375eXF9dzIQg1zyElRAVIiAtSrGvLCGKGqvFIkK7WSOfIaqlowUUNhpMIMJFYMgQwvY9AsebHX7VsX9OQ9aFbmpRAgi_xegqsyK6SK3mfJck9UDje6j67R_9AOrf654Xyj0Q_WtKQNlqSE4nxlWJ4TXwlA5EKBgJiNMFHrzXTauNpSZWL9PLZHosd_OrvWjfuumRQc2C6Z80nAu1jQMOitDYbaWHNyY9DxcMVlpiL48i_w3-7vpw4rsNhTDUaTtqtdzM3Er6KtNfEh1TbuX-QyKkOmZAx4dRQQmYFuhwbHEPTy08f_Z2--HrPnB-yasB3WwbXjYF0XjsF8DxrvQvBU_y4xy_SuD3751Ls-0FMfxLDnh9fzJ2h6-HAHaFAByw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1289057805</pqid></control><display><type>article</type><title>Experimental rugged fitness landscape in protein sequence space</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hayashi, Yuuki ; Aita, Takuyo ; Toyota, Hitoshi ; Husimi, Yuzuru ; Urabe, Itaru ; Yomo, Tetsuya</creator><contributor>Rutherford, Suzannah</contributor><creatorcontrib>Hayashi, Yuuki ; Aita, Takuyo ; Toyota, Hitoshi ; Husimi, Yuzuru ; Urabe, Itaru ; Yomo, Tetsuya ; Rutherford, Suzannah</creatorcontrib><description>The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat protein D2 domain, which is essential for phage infection. After 20 cycles of random substitution at sites 12-130 of the initial random polypeptide and selection for infectivity, the selected phage showed a 1.7x10(4)-fold increase in infectivity, defined as the number of infected cells per ml of phage suspension. Fitness was defined as the logarithm of infectivity, and we analyzed (1) the dependence of stationary fitness on library size, which increased gradually, and (2) the time course of changes in fitness in transitional phases, based on an original theory regarding the evolutionary dynamics in Kauffman's n-k fitness landscape model. In the landscape model, single mutations at single sites among n sites affect the contribution of k other sites to fitness. Based on the results of these analyses, k was estimated to be 18-24. According to the estimated parameters, the landscape was plotted as a smooth surface up to a relative fitness of 0.4 of the global peak, whereas the landscape had a highly rugged surface with many local peaks above this relative fitness value. Based on the landscapes of these two different surfaces, it appears possible for adaptive walks with only random substitutions to climb with relative ease up to the middle region of the fitness landscape from any primordial or random sequence, whereas an enormous range of sequence diversity is required to climb further up the rugged surface above the middle region.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0000096</identifier><identifier>PMID: 17183728</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Amino acids ; Analysis ; Bacteriophage M13 - genetics ; Bacteriophage M13 - pathogenicity ; Biophysics ; Biopolymers ; Capsid Proteins - genetics ; Cloning ; Coat protein ; Deoxyribonucleic acid ; Directed Molecular Evolution ; DNA ; DNA polymerase ; E coli ; Escherichia coli - virology ; Evolution ; Evolution, Molecular ; Evolutionary Biology ; Fitness ; Health aspects ; Infectivity ; Laboratories ; Landscape ; Materials science ; Models, Genetic ; Molecular Biology ; Molecular evolution ; Molecular Sequence Data ; Mutation ; Novellas ; Parameter estimation ; Phages ; Polymerase chain reaction ; Polypeptides ; Proteins ; Proteins - genetics ; Reproductive fitness ; Vectors (Biology)</subject><ispartof>PloS one, 2006-12, Vol.1 (1), p.e96-e96</ispartof><rights>COPYRIGHT 2006 Public Library of Science</rights><rights>2006 Hayashi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Hayashi et al. 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-34e8e5377aa33fbf345cc68d4d8e7d8b74a2f3df616f35c78a037ad1a3ec29aa3</citedby><cites>FETCH-LOGICAL-c758t-34e8e5377aa33fbf345cc68d4d8e7d8b74a2f3df616f35c78a037ad1a3ec29aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1762315/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1762315/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17183728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rutherford, Suzannah</contributor><creatorcontrib>Hayashi, Yuuki</creatorcontrib><creatorcontrib>Aita, Takuyo</creatorcontrib><creatorcontrib>Toyota, Hitoshi</creatorcontrib><creatorcontrib>Husimi, Yuzuru</creatorcontrib><creatorcontrib>Urabe, Itaru</creatorcontrib><creatorcontrib>Yomo, Tetsuya</creatorcontrib><title>Experimental rugged fitness landscape in protein sequence space</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat protein D2 domain, which is essential for phage infection. After 20 cycles of random substitution at sites 12-130 of the initial random polypeptide and selection for infectivity, the selected phage showed a 1.7x10(4)-fold increase in infectivity, defined as the number of infected cells per ml of phage suspension. Fitness was defined as the logarithm of infectivity, and we analyzed (1) the dependence of stationary fitness on library size, which increased gradually, and (2) the time course of changes in fitness in transitional phases, based on an original theory regarding the evolutionary dynamics in Kauffman's n-k fitness landscape model. In the landscape model, single mutations at single sites among n sites affect the contribution of k other sites to fitness. Based on the results of these analyses, k was estimated to be 18-24. According to the estimated parameters, the landscape was plotted as a smooth surface up to a relative fitness of 0.4 of the global peak, whereas the landscape had a highly rugged surface with many local peaks above this relative fitness value. Based on the landscapes of these two different surfaces, it appears possible for adaptive walks with only random substitutions to climb with relative ease up to the middle region of the fitness landscape from any primordial or random sequence, whereas an enormous range of sequence diversity is required to climb further up the rugged surface above the middle region.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Bacteriophage M13 - genetics</subject><subject>Bacteriophage M13 - pathogenicity</subject><subject>Biophysics</subject><subject>Biopolymers</subject><subject>Capsid Proteins - genetics</subject><subject>Cloning</subject><subject>Coat protein</subject><subject>Deoxyribonucleic acid</subject><subject>Directed Molecular Evolution</subject><subject>DNA</subject><subject>DNA polymerase</subject><subject>E coli</subject><subject>Escherichia coli - virology</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary Biology</subject><subject>Fitness</subject><subject>Health aspects</subject><subject>Infectivity</subject><subject>Laboratories</subject><subject>Landscape</subject><subject>Materials science</subject><subject>Models, Genetic</subject><subject>Molecular Biology</subject><subject>Molecular evolution</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Novellas</subject><subject>Parameter estimation</subject><subject>Phages</subject><subject>Polymerase chain reaction</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>Proteins - genetics</subject><subject>Reproductive fitness</subject><subject>Vectors (Biology)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk2-L1DAQxoso3t3qNxAtCAe-2LXJtEn6RjmOUxcODvz3Nsym026WblOTVs5vf1m36q54YPoiIf3Nk3kmmSR5xrIFA8leb9zoO2wXvetoke1GKR4kp6wEPhc8g4cH65PkLIRNlhWghHicnDDJFEiuTpO3V7c9ebulbsA29WPTUJXWdugohLTFrgoGe0ptl_beDRTnQN9G6gyloUdDT5JHNbaBnk7zLPny7urz5Yf59c375eXF9dzIQg1zyElRAVIiAtSrGvLCGKGqvFIkK7WSOfIaqlowUUNhpMIMJFYMgQwvY9AsebHX7VsX9OQ9aFbmpRAgi_xegqsyK6SK3mfJck9UDje6j67R_9AOrf654Xyj0Q_WtKQNlqSE4nxlWJ4TXwlA5EKBgJiNMFHrzXTauNpSZWL9PLZHosd_OrvWjfuumRQc2C6Z80nAu1jQMOitDYbaWHNyY9DxcMVlpiL48i_w3-7vpw4rsNhTDUaTtqtdzM3Er6KtNfEh1TbuX-QyKkOmZAx4dRQQmYFuhwbHEPTy08f_Z2--HrPnB-yasB3WwbXjYF0XjsF8DxrvQvBU_y4xy_SuD3751Ls-0FMfxLDnh9fzJ2h6-HAHaFAByw</recordid><startdate>20061220</startdate><enddate>20061220</enddate><creator>Hayashi, Yuuki</creator><creator>Aita, Takuyo</creator><creator>Toyota, Hitoshi</creator><creator>Husimi, Yuzuru</creator><creator>Urabe, Itaru</creator><creator>Yomo, Tetsuya</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20061220</creationdate><title>Experimental rugged fitness landscape in protein sequence space</title><author>Hayashi, Yuuki ; Aita, Takuyo ; Toyota, Hitoshi ; Husimi, Yuzuru ; Urabe, Itaru ; Yomo, Tetsuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-34e8e5377aa33fbf345cc68d4d8e7d8b74a2f3df616f35c78a037ad1a3ec29aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Bacteriophage M13 - genetics</topic><topic>Bacteriophage M13 - pathogenicity</topic><topic>Biophysics</topic><topic>Biopolymers</topic><topic>Capsid Proteins - genetics</topic><topic>Cloning</topic><topic>Coat protein</topic><topic>Deoxyribonucleic acid</topic><topic>Directed Molecular Evolution</topic><topic>DNA</topic><topic>DNA polymerase</topic><topic>E coli</topic><topic>Escherichia coli - virology</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary Biology</topic><topic>Fitness</topic><topic>Health aspects</topic><topic>Infectivity</topic><topic>Laboratories</topic><topic>Landscape</topic><topic>Materials science</topic><topic>Models, Genetic</topic><topic>Molecular Biology</topic><topic>Molecular evolution</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Novellas</topic><topic>Parameter estimation</topic><topic>Phages</topic><topic>Polymerase chain reaction</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>Proteins - genetics</topic><topic>Reproductive fitness</topic><topic>Vectors (Biology)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayashi, Yuuki</creatorcontrib><creatorcontrib>Aita, Takuyo</creatorcontrib><creatorcontrib>Toyota, Hitoshi</creatorcontrib><creatorcontrib>Husimi, Yuzuru</creatorcontrib><creatorcontrib>Urabe, Itaru</creatorcontrib><creatorcontrib>Yomo, Tetsuya</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayashi, Yuuki</au><au>Aita, Takuyo</au><au>Toyota, Hitoshi</au><au>Husimi, Yuzuru</au><au>Urabe, Itaru</au><au>Yomo, Tetsuya</au><au>Rutherford, Suzannah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental rugged fitness landscape in protein sequence space</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2006-12-20</date><risdate>2006</risdate><volume>1</volume><issue>1</issue><spage>e96</spage><epage>e96</epage><pages>e96-e96</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat protein D2 domain, which is essential for phage infection. After 20 cycles of random substitution at sites 12-130 of the initial random polypeptide and selection for infectivity, the selected phage showed a 1.7x10(4)-fold increase in infectivity, defined as the number of infected cells per ml of phage suspension. Fitness was defined as the logarithm of infectivity, and we analyzed (1) the dependence of stationary fitness on library size, which increased gradually, and (2) the time course of changes in fitness in transitional phases, based on an original theory regarding the evolutionary dynamics in Kauffman's n-k fitness landscape model. In the landscape model, single mutations at single sites among n sites affect the contribution of k other sites to fitness. Based on the results of these analyses, k was estimated to be 18-24. According to the estimated parameters, the landscape was plotted as a smooth surface up to a relative fitness of 0.4 of the global peak, whereas the landscape had a highly rugged surface with many local peaks above this relative fitness value. Based on the landscapes of these two different surfaces, it appears possible for adaptive walks with only random substitutions to climb with relative ease up to the middle region of the fitness landscape from any primordial or random sequence, whereas an enormous range of sequence diversity is required to climb further up the rugged surface above the middle region.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>17183728</pmid><doi>10.1371/journal.pone.0000096</doi><tpages>e96</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2006-12, Vol.1 (1), p.e96-e96 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1949663754 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Amino acids Analysis Bacteriophage M13 - genetics Bacteriophage M13 - pathogenicity Biophysics Biopolymers Capsid Proteins - genetics Cloning Coat protein Deoxyribonucleic acid Directed Molecular Evolution DNA DNA polymerase E coli Escherichia coli - virology Evolution Evolution, Molecular Evolutionary Biology Fitness Health aspects Infectivity Laboratories Landscape Materials science Models, Genetic Molecular Biology Molecular evolution Molecular Sequence Data Mutation Novellas Parameter estimation Phages Polymerase chain reaction Polypeptides Proteins Proteins - genetics Reproductive fitness Vectors (Biology) |
title | Experimental rugged fitness landscape in protein sequence space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20rugged%20fitness%20landscape%20in%20protein%20sequence%20space&rft.jtitle=PloS%20one&rft.au=Hayashi,%20Yuuki&rft.date=2006-12-20&rft.volume=1&rft.issue=1&rft.spage=e96&rft.epage=e96&rft.pages=e96-e96&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0000096&rft_dat=%3Cgale_plos_%3EA471943087%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1289057805&rft_id=info:pmid/17183728&rft_galeid=A471943087&rft_doaj_id=oai_doaj_org_article_ca9e86822bc144e2b63aa2683639aa6c&rfr_iscdi=true |