Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters

Although there are a variety of commercially available biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, managing biogas H2S remains a significant challenge for agricultural digesters where labor and operational funds are very limited compared to municipal and ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-10, Vol.12 (10), p.e0185738-e0185738
Hauptverfasser: Mulbry, Walter, Selmer, Kaitlyn, Lansing, Stephanie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0185738
container_issue 10
container_start_page e0185738
container_title PloS one
container_volume 12
creator Mulbry, Walter
Selmer, Kaitlyn
Lansing, Stephanie
description Although there are a variety of commercially available biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, managing biogas H2S remains a significant challenge for agricultural digesters where labor and operational funds are very limited compared to municipal and industrial digesters. The objectives of this study were to evaluate headspace aeration for reducing H2S levels in low cost plug flow digesters and to characterize the relationship between the liquid surface area and H2S oxidation rates. Experiments with replicate field scale plug flow digesters showed that H2S levels decreased from 3500 ppmv to
doi_str_mv 10.1371/journal.pone.0185738
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1947047616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7a806d1736a142259d8f7bb232a9fc84</doaj_id><sourcerecordid>1947047616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-20ea77f5dc280ba9adc0516151dc7354fd7cd5ff4374efe2f09edd852a12d0173</originalsourceid><addsrcrecordid>eNqFUk1v1DAQjRCIlsI_QBCJC5csthN_XZBQVaBSJS5wtmbtceolG2_tpGL_PV42rVqExMnWvDfPnjevql5TsqKtpB82cU4jDKtdHHFFqOKyVU-qU6pb1ghG2qcP7ifVi5w3hPBWCfG8OmFKS6G1Oq1-XniPdqqjr4dwMwdX5zl5sFhDQqjjWF_vXYo9jgUYfHBYx1_BwRQK5OYUxr7eBptiA5iO1VAACGlfb2GcE9Yu9JgnTPll9czDkPHVcp5VPz5ffD__2lx9-3J5_umqsZzrqWEEQUrPnWWKrEGDs4RTQTl1Vra8805ax73vWtmhR-aJRucUZ0CZI1S2Z9Xbo-5uiNksPmVDdSdJJwUVhXF5ZLgIG7NLYQtpbyIE86cQU28gTcEOaCQoIlxRFUA7xrh2ysv1mrUMtLeqK1ofl9fm9RadxXFKMDwSfYyM4dr08dZwwaRmqgi8XwRSvJmLVWYbssVhgBHjnA0jlDAiKOX_pR5GLPsW6mDCu7-o_zaiO7LKBnNO6O__TYk5xOyuyxxiZpaYlbY3D2e-b7rLVfsbLKbR_Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1947047616</pqid></control><display><type>article</type><title>Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Mulbry, Walter ; Selmer, Kaitlyn ; Lansing, Stephanie</creator><contributor>Senko, John M.</contributor><creatorcontrib>Mulbry, Walter ; Selmer, Kaitlyn ; Lansing, Stephanie ; Senko, John M.</creatorcontrib><description>Although there are a variety of commercially available biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, managing biogas H2S remains a significant challenge for agricultural digesters where labor and operational funds are very limited compared to municipal and industrial digesters. The objectives of this study were to evaluate headspace aeration for reducing H2S levels in low cost plug flow digesters and to characterize the relationship between the liquid surface area and H2S oxidation rates. Experiments with replicate field scale plug flow digesters showed that H2S levels decreased from 3500 ppmv to &lt;100 ppmv when headspace oxygen levels were 0.5 to 1%. Methane production was not affected by aeration rates that resulted in headspace oxygen levels of up to 1%. Pilot scale experiments using 65 to 104 L desulfurization units showed that H2S oxidation rates increased with increases in liquid surface area. These results support the hypothesis that H2S oxidation rates are limited, in part, by the surface area available for oxygen transfer, and can be increased by growth of biofilms containing H2S oxidizing bacteria. Maximum removal rates corresponded to 40 to 100 g S m-2 d-1 of liquid surface area at biogas retention times of 30 to 40 min.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0185738</identifier><identifier>PMID: 28976998</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aeration ; Agricultural management ; Agriculture ; Animal wastes ; Bacteria ; biofilm ; Biofilms ; Biogas ; Bioreactors ; Chemical treatment ; dairy manure ; Dairying ; desulfurization ; Digesters ; Earth Sciences ; Ecology and Environmental Sciences ; Engineering and Technology ; Headspace ; headspace analysis ; Hydrogen ; Hydrogen ion concentration ; Hydrogen sulfide ; Hydrogen Sulfide - chemistry ; labor ; liquids ; Low cost ; Manure ; Manures ; Methane - metabolism ; Methane production ; microbial growth ; Oxidation ; Oxidation-Reduction ; Oxygen ; Oxygen transfer ; Physical Sciences ; Pilot Projects ; Plug flow ; Refuse as fuel ; Scale (corrosion) ; Sulfide ; Sulfides ; Surface area</subject><ispartof>PloS one, 2017-10, Vol.12 (10), p.e0185738-e0185738</ispartof><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-20ea77f5dc280ba9adc0516151dc7354fd7cd5ff4374efe2f09edd852a12d0173</citedby><cites>FETCH-LOGICAL-c559t-20ea77f5dc280ba9adc0516151dc7354fd7cd5ff4374efe2f09edd852a12d0173</cites><orcidid>0000-0001-8129-6736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627928/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627928/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28976998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Senko, John M.</contributor><creatorcontrib>Mulbry, Walter</creatorcontrib><creatorcontrib>Selmer, Kaitlyn</creatorcontrib><creatorcontrib>Lansing, Stephanie</creatorcontrib><title>Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Although there are a variety of commercially available biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, managing biogas H2S remains a significant challenge for agricultural digesters where labor and operational funds are very limited compared to municipal and industrial digesters. The objectives of this study were to evaluate headspace aeration for reducing H2S levels in low cost plug flow digesters and to characterize the relationship between the liquid surface area and H2S oxidation rates. Experiments with replicate field scale plug flow digesters showed that H2S levels decreased from 3500 ppmv to &lt;100 ppmv when headspace oxygen levels were 0.5 to 1%. Methane production was not affected by aeration rates that resulted in headspace oxygen levels of up to 1%. Pilot scale experiments using 65 to 104 L desulfurization units showed that H2S oxidation rates increased with increases in liquid surface area. These results support the hypothesis that H2S oxidation rates are limited, in part, by the surface area available for oxygen transfer, and can be increased by growth of biofilms containing H2S oxidizing bacteria. Maximum removal rates corresponded to 40 to 100 g S m-2 d-1 of liquid surface area at biogas retention times of 30 to 40 min.</description><subject>Aeration</subject><subject>Agricultural management</subject><subject>Agriculture</subject><subject>Animal wastes</subject><subject>Bacteria</subject><subject>biofilm</subject><subject>Biofilms</subject><subject>Biogas</subject><subject>Bioreactors</subject><subject>Chemical treatment</subject><subject>dairy manure</subject><subject>Dairying</subject><subject>desulfurization</subject><subject>Digesters</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering and Technology</subject><subject>Headspace</subject><subject>headspace analysis</subject><subject>Hydrogen</subject><subject>Hydrogen ion concentration</subject><subject>Hydrogen sulfide</subject><subject>Hydrogen Sulfide - chemistry</subject><subject>labor</subject><subject>liquids</subject><subject>Low cost</subject><subject>Manure</subject><subject>Manures</subject><subject>Methane - metabolism</subject><subject>Methane production</subject><subject>microbial growth</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxygen</subject><subject>Oxygen transfer</subject><subject>Physical Sciences</subject><subject>Pilot Projects</subject><subject>Plug flow</subject><subject>Refuse as fuel</subject><subject>Scale (corrosion)</subject><subject>Sulfide</subject><subject>Sulfides</subject><subject>Surface area</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqFUk1v1DAQjRCIlsI_QBCJC5csthN_XZBQVaBSJS5wtmbtceolG2_tpGL_PV42rVqExMnWvDfPnjevql5TsqKtpB82cU4jDKtdHHFFqOKyVU-qU6pb1ghG2qcP7ifVi5w3hPBWCfG8OmFKS6G1Oq1-XniPdqqjr4dwMwdX5zl5sFhDQqjjWF_vXYo9jgUYfHBYx1_BwRQK5OYUxr7eBptiA5iO1VAACGlfb2GcE9Yu9JgnTPll9czDkPHVcp5VPz5ffD__2lx9-3J5_umqsZzrqWEEQUrPnWWKrEGDs4RTQTl1Vra8805ax73vWtmhR-aJRucUZ0CZI1S2Z9Xbo-5uiNksPmVDdSdJJwUVhXF5ZLgIG7NLYQtpbyIE86cQU28gTcEOaCQoIlxRFUA7xrh2ysv1mrUMtLeqK1ofl9fm9RadxXFKMDwSfYyM4dr08dZwwaRmqgi8XwRSvJmLVWYbssVhgBHjnA0jlDAiKOX_pR5GLPsW6mDCu7-o_zaiO7LKBnNO6O__TYk5xOyuyxxiZpaYlbY3D2e-b7rLVfsbLKbR_Q</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Mulbry, Walter</creator><creator>Selmer, Kaitlyn</creator><creator>Lansing, Stephanie</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8129-6736</orcidid></search><sort><creationdate>20171001</creationdate><title>Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters</title><author>Mulbry, Walter ; Selmer, Kaitlyn ; Lansing, Stephanie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-20ea77f5dc280ba9adc0516151dc7354fd7cd5ff4374efe2f09edd852a12d0173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aeration</topic><topic>Agricultural management</topic><topic>Agriculture</topic><topic>Animal wastes</topic><topic>Bacteria</topic><topic>biofilm</topic><topic>Biofilms</topic><topic>Biogas</topic><topic>Bioreactors</topic><topic>Chemical treatment</topic><topic>dairy manure</topic><topic>Dairying</topic><topic>desulfurization</topic><topic>Digesters</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering and Technology</topic><topic>Headspace</topic><topic>headspace analysis</topic><topic>Hydrogen</topic><topic>Hydrogen ion concentration</topic><topic>Hydrogen sulfide</topic><topic>Hydrogen Sulfide - chemistry</topic><topic>labor</topic><topic>liquids</topic><topic>Low cost</topic><topic>Manure</topic><topic>Manures</topic><topic>Methane - metabolism</topic><topic>Methane production</topic><topic>microbial growth</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxygen</topic><topic>Oxygen transfer</topic><topic>Physical Sciences</topic><topic>Pilot Projects</topic><topic>Plug flow</topic><topic>Refuse as fuel</topic><topic>Scale (corrosion)</topic><topic>Sulfide</topic><topic>Sulfides</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulbry, Walter</creatorcontrib><creatorcontrib>Selmer, Kaitlyn</creatorcontrib><creatorcontrib>Lansing, Stephanie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulbry, Walter</au><au>Selmer, Kaitlyn</au><au>Lansing, Stephanie</au><au>Senko, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>12</volume><issue>10</issue><spage>e0185738</spage><epage>e0185738</epage><pages>e0185738-e0185738</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Although there are a variety of commercially available biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, managing biogas H2S remains a significant challenge for agricultural digesters where labor and operational funds are very limited compared to municipal and industrial digesters. The objectives of this study were to evaluate headspace aeration for reducing H2S levels in low cost plug flow digesters and to characterize the relationship between the liquid surface area and H2S oxidation rates. Experiments with replicate field scale plug flow digesters showed that H2S levels decreased from 3500 ppmv to &lt;100 ppmv when headspace oxygen levels were 0.5 to 1%. Methane production was not affected by aeration rates that resulted in headspace oxygen levels of up to 1%. Pilot scale experiments using 65 to 104 L desulfurization units showed that H2S oxidation rates increased with increases in liquid surface area. These results support the hypothesis that H2S oxidation rates are limited, in part, by the surface area available for oxygen transfer, and can be increased by growth of biofilms containing H2S oxidizing bacteria. Maximum removal rates corresponded to 40 to 100 g S m-2 d-1 of liquid surface area at biogas retention times of 30 to 40 min.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28976998</pmid><doi>10.1371/journal.pone.0185738</doi><orcidid>https://orcid.org/0000-0001-8129-6736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-10, Vol.12 (10), p.e0185738-e0185738
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1947047616
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Aeration
Agricultural management
Agriculture
Animal wastes
Bacteria
biofilm
Biofilms
Biogas
Bioreactors
Chemical treatment
dairy manure
Dairying
desulfurization
Digesters
Earth Sciences
Ecology and Environmental Sciences
Engineering and Technology
Headspace
headspace analysis
Hydrogen
Hydrogen ion concentration
Hydrogen sulfide
Hydrogen Sulfide - chemistry
labor
liquids
Low cost
Manure
Manures
Methane - metabolism
Methane production
microbial growth
Oxidation
Oxidation-Reduction
Oxygen
Oxygen transfer
Physical Sciences
Pilot Projects
Plug flow
Refuse as fuel
Scale (corrosion)
Sulfide
Sulfides
Surface area
title Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20liquid%20surface%20area%20on%20hydrogen%20sulfide%20oxidation%20during%20micro-aeration%20in%20dairy%20manure%20digesters&rft.jtitle=PloS%20one&rft.au=Mulbry,%20Walter&rft.date=2017-10-01&rft.volume=12&rft.issue=10&rft.spage=e0185738&rft.epage=e0185738&rft.pages=e0185738-e0185738&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0185738&rft_dat=%3Cproquest_plos_%3E1947047616%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1947047616&rft_id=info:pmid/28976998&rft_doaj_id=oai_doaj_org_article_7a806d1736a142259d8f7bb232a9fc84&rfr_iscdi=true