Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in Drosophila ovaries

Small RNAs called PIWI -interacting RNAs (piRNAs) are essential for transposon control and fertility in animals. Primary processing is the small RNA biogenesis pathway that uses long single-stranded RNA precursors to generate millions of individual piRNAs, but the molecular mechanisms that identify...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2017-08, Vol.13 (8), p.e1006956-e1006956
Hauptverfasser: Pandey, Radha Raman, Homolka, David, Chen, Kuan-Ming, Sachidanandam, Ravi, Fauvarque, Marie-Odile, Pillai, Ramesh S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006956
container_issue 8
container_start_page e1006956
container_title PLoS genetics
container_volume 13
creator Pandey, Radha Raman
Homolka, David
Chen, Kuan-Ming
Sachidanandam, Ravi
Fauvarque, Marie-Odile
Pillai, Ramesh S
description Small RNAs called PIWI -interacting RNAs (piRNAs) are essential for transposon control and fertility in animals. Primary processing is the small RNA biogenesis pathway that uses long single-stranded RNA precursors to generate millions of individual piRNAs, but the molecular mechanisms that identify a transcript as a precursor are poorly understood. Here we demonstrate that artificial tethering of the piRNA biogenesis factor, Armi, to a transcript is sufficient to direct it into primary processing in Drosophila ovaries and in an ovarian cell culture model. In the fly ovarian somatic follicle cells, the transcript becomes cleaved in a stepwise manner, with a 5'→3' directionality, liberating U1-containing ~24 nt piRNAs that are loaded into Piwi. Although uridines are preferred for generation of piRNA 5' ends, processing takes place even in their absence, albeit at a lower efficiency. We show that recombinant Armi has 5'→3' helicase activity, and mutations that abolish this activity also reduce piRNA processing in vivo. Another somatic piRNA pathway factor Yb, an interactor of Armi, is also able to trigger piRNA biogenesis when tethered to a transcript. Tethering-mediated primary piRNA biogenesis is also functional in the fly ovarian germline and loads all the three PIWI proteins present in this environment. Our study finds a broad correlation between piRNA processing and localization of the tethered factors to the cytoplasmic perinuclear ribonucleoprotein granules called germline nuage or somatic Yb bodies. We conclude that transcripts bound by Armi and Yb are identified as piRNA precursors, resulting in localization to cytoplasmic processing granules and their subsequent engagement by the resident piRNA biogenesis machinery.
doi_str_mv 10.1371/journal.pgen.1006956
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1939438915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4d9c76e00d174d1389865dc1dbb86a82</doaj_id><sourcerecordid>1939438915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-aece12d4234d2c26eb75a11a78ed004a7f762eb05f99337ce76e1e02c025fe0c3</originalsourceid><addsrcrecordid>eNptUstu1DAUjRCIlsIfILDEBhYz2I5f2SCNyqOVRiBVsGBlOfZNxqNMnNrJIP4eTyet2oqVr-4959yHT1G8JnhJSkk-bsMUe9Mthxb6JcFYVFw8KU4J5-VCMsye3otPihcpbTEuuark8-KEKkWlwuy0-HMFNk5-3EE_otCgVdz50bSATO_Q7xqNARk0RtMnG_0w5tC3LcSE_JjQsDEJHBpisJCS71vk-0wYot-Z-BcN_ur7KiN79DmGFIaN7wwKexM9pJfFs8Z0CV7N71nx6-uXn-cXi_WPb5fnq_XCcoHHhQELhDpGS-aopQJqyQ0hRipwGDMjGyko1Jg3VVWW0oIUQABTiylvANvyrHh71B26kPR8s6RJVVasVBXhGXF5RLhgtnqeXQfj9U0ixFabOHrbgWausrkBxo5I5kjmK8GdJa6ulTCKZq1Pc7ep3oGz-ajRdA9EH1Z6v9Ft2GvOpRLyIPDhKLB5RLtYrfUhhymRoqLVnmTs-7lZDNcTpFHvfLLQdaaHMN3sSCjjnKoMffcI-v9LsCPK5u9KEZq7CQjWB8_dsvTBc3r2XKa9ub_0HenWZOU_GlLV4Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939438915</pqid></control><display><type>article</type><title>Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in Drosophila ovaries</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Pandey, Radha Raman ; Homolka, David ; Chen, Kuan-Ming ; Sachidanandam, Ravi ; Fauvarque, Marie-Odile ; Pillai, Ramesh S</creator><contributor>Miska, Eric A</contributor><creatorcontrib>Pandey, Radha Raman ; Homolka, David ; Chen, Kuan-Ming ; Sachidanandam, Ravi ; Fauvarque, Marie-Odile ; Pillai, Ramesh S ; Miska, Eric A</creatorcontrib><description>Small RNAs called PIWI -interacting RNAs (piRNAs) are essential for transposon control and fertility in animals. Primary processing is the small RNA biogenesis pathway that uses long single-stranded RNA precursors to generate millions of individual piRNAs, but the molecular mechanisms that identify a transcript as a precursor are poorly understood. Here we demonstrate that artificial tethering of the piRNA biogenesis factor, Armi, to a transcript is sufficient to direct it into primary processing in Drosophila ovaries and in an ovarian cell culture model. In the fly ovarian somatic follicle cells, the transcript becomes cleaved in a stepwise manner, with a 5'→3' directionality, liberating U1-containing ~24 nt piRNAs that are loaded into Piwi. Although uridines are preferred for generation of piRNA 5' ends, processing takes place even in their absence, albeit at a lower efficiency. We show that recombinant Armi has 5'→3' helicase activity, and mutations that abolish this activity also reduce piRNA processing in vivo. Another somatic piRNA pathway factor Yb, an interactor of Armi, is also able to trigger piRNA biogenesis when tethered to a transcript. Tethering-mediated primary piRNA biogenesis is also functional in the fly ovarian germline and loads all the three PIWI proteins present in this environment. Our study finds a broad correlation between piRNA processing and localization of the tethered factors to the cytoplasmic perinuclear ribonucleoprotein granules called germline nuage or somatic Yb bodies. We conclude that transcripts bound by Armi and Yb are identified as piRNA precursors, resulting in localization to cytoplasmic processing granules and their subsequent engagement by the resident piRNA biogenesis machinery.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006956</identifier><identifier>PMID: 28827804</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology and Life Sciences ; Biosynthesis ; Cell culture ; DNA helicase ; DNA methylation ; DNA Transposable Elements - genetics ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth &amp; development ; Drosophila Proteins - genetics ; Evolution ; Female ; Fertility ; Fertility - genetics ; Fruit flies ; Funding ; Genomes ; Germ Cells - growth &amp; development ; Granular materials ; Infertility ; Insects ; Life Sciences ; Localization ; Medicine and Health Sciences ; Molecular biology ; Molecular modelling ; Mutation ; Ovaries ; Ovary - growth &amp; development ; Ovary - metabolism ; Physical sciences ; Proteins ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; RNA Helicases - genetics ; RNA polymerase ; RNA processing ; RNA, Small Interfering - biosynthesis ; RNA, Small Interfering - genetics ; Tethering ; Transcription</subject><ispartof>PLoS genetics, 2017-08, Vol.13 (8), p.e1006956-e1006956</ispartof><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: ovaries. PLoS Genet 13(8): e1006956. https://doi.org/10.1371/journal.pgen.1006956</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017 Pandey et al 2017 Pandey et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: ovaries. PLoS Genet 13(8): e1006956. https://doi.org/10.1371/journal.pgen.1006956</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-aece12d4234d2c26eb75a11a78ed004a7f762eb05f99337ce76e1e02c025fe0c3</citedby><cites>FETCH-LOGICAL-c560t-aece12d4234d2c26eb75a11a78ed004a7f762eb05f99337ce76e1e02c025fe0c3</cites><orcidid>0000-0001-9844-4459 ; 0000-0003-2080-3604 ; 0000-0001-5020-3701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578672/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578672/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28827804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02176929$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Miska, Eric A</contributor><creatorcontrib>Pandey, Radha Raman</creatorcontrib><creatorcontrib>Homolka, David</creatorcontrib><creatorcontrib>Chen, Kuan-Ming</creatorcontrib><creatorcontrib>Sachidanandam, Ravi</creatorcontrib><creatorcontrib>Fauvarque, Marie-Odile</creatorcontrib><creatorcontrib>Pillai, Ramesh S</creatorcontrib><title>Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in Drosophila ovaries</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Small RNAs called PIWI -interacting RNAs (piRNAs) are essential for transposon control and fertility in animals. Primary processing is the small RNA biogenesis pathway that uses long single-stranded RNA precursors to generate millions of individual piRNAs, but the molecular mechanisms that identify a transcript as a precursor are poorly understood. Here we demonstrate that artificial tethering of the piRNA biogenesis factor, Armi, to a transcript is sufficient to direct it into primary processing in Drosophila ovaries and in an ovarian cell culture model. In the fly ovarian somatic follicle cells, the transcript becomes cleaved in a stepwise manner, with a 5'→3' directionality, liberating U1-containing ~24 nt piRNAs that are loaded into Piwi. Although uridines are preferred for generation of piRNA 5' ends, processing takes place even in their absence, albeit at a lower efficiency. We show that recombinant Armi has 5'→3' helicase activity, and mutations that abolish this activity also reduce piRNA processing in vivo. Another somatic piRNA pathway factor Yb, an interactor of Armi, is also able to trigger piRNA biogenesis when tethered to a transcript. Tethering-mediated primary piRNA biogenesis is also functional in the fly ovarian germline and loads all the three PIWI proteins present in this environment. Our study finds a broad correlation between piRNA processing and localization of the tethered factors to the cytoplasmic perinuclear ribonucleoprotein granules called germline nuage or somatic Yb bodies. We conclude that transcripts bound by Armi and Yb are identified as piRNA precursors, resulting in localization to cytoplasmic processing granules and their subsequent engagement by the resident piRNA biogenesis machinery.</description><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Cell culture</subject><subject>DNA helicase</subject><subject>DNA methylation</subject><subject>DNA Transposable Elements - genetics</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth &amp; development</subject><subject>Drosophila Proteins - genetics</subject><subject>Evolution</subject><subject>Female</subject><subject>Fertility</subject><subject>Fertility - genetics</subject><subject>Fruit flies</subject><subject>Funding</subject><subject>Genomes</subject><subject>Germ Cells - growth &amp; development</subject><subject>Granular materials</subject><subject>Infertility</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Medicine and Health Sciences</subject><subject>Molecular biology</subject><subject>Molecular modelling</subject><subject>Mutation</subject><subject>Ovaries</subject><subject>Ovary - growth &amp; development</subject><subject>Ovary - metabolism</subject><subject>Physical sciences</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Helicases - genetics</subject><subject>RNA polymerase</subject><subject>RNA processing</subject><subject>RNA, Small Interfering - biosynthesis</subject><subject>RNA, Small Interfering - genetics</subject><subject>Tethering</subject><subject>Transcription</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu1DAUjRCIlsIfILDEBhYz2I5f2SCNyqOVRiBVsGBlOfZNxqNMnNrJIP4eTyet2oqVr-4959yHT1G8JnhJSkk-bsMUe9Mthxb6JcFYVFw8KU4J5-VCMsye3otPihcpbTEuuark8-KEKkWlwuy0-HMFNk5-3EE_otCgVdz50bSATO_Q7xqNARk0RtMnG_0w5tC3LcSE_JjQsDEJHBpisJCS71vk-0wYot-Z-BcN_ur7KiN79DmGFIaN7wwKexM9pJfFs8Z0CV7N71nx6-uXn-cXi_WPb5fnq_XCcoHHhQELhDpGS-aopQJqyQ0hRipwGDMjGyko1Jg3VVWW0oIUQABTiylvANvyrHh71B26kPR8s6RJVVasVBXhGXF5RLhgtnqeXQfj9U0ixFabOHrbgWausrkBxo5I5kjmK8GdJa6ulTCKZq1Pc7ep3oGz-ajRdA9EH1Z6v9Ft2GvOpRLyIPDhKLB5RLtYrfUhhymRoqLVnmTs-7lZDNcTpFHvfLLQdaaHMN3sSCjjnKoMffcI-v9LsCPK5u9KEZq7CQjWB8_dsvTBc3r2XKa9ub_0HenWZOU_GlLV4Q</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Pandey, Radha Raman</creator><creator>Homolka, David</creator><creator>Chen, Kuan-Ming</creator><creator>Sachidanandam, Ravi</creator><creator>Fauvarque, Marie-Odile</creator><creator>Pillai, Ramesh S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9844-4459</orcidid><orcidid>https://orcid.org/0000-0003-2080-3604</orcidid><orcidid>https://orcid.org/0000-0001-5020-3701</orcidid></search><sort><creationdate>20170801</creationdate><title>Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in Drosophila ovaries</title><author>Pandey, Radha Raman ; Homolka, David ; Chen, Kuan-Ming ; Sachidanandam, Ravi ; Fauvarque, Marie-Odile ; Pillai, Ramesh S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-aece12d4234d2c26eb75a11a78ed004a7f762eb05f99337ce76e1e02c025fe0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Cell culture</topic><topic>DNA helicase</topic><topic>DNA methylation</topic><topic>DNA Transposable Elements - genetics</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth &amp; development</topic><topic>Drosophila Proteins - genetics</topic><topic>Evolution</topic><topic>Female</topic><topic>Fertility</topic><topic>Fertility - genetics</topic><topic>Fruit flies</topic><topic>Funding</topic><topic>Genomes</topic><topic>Germ Cells - growth &amp; development</topic><topic>Granular materials</topic><topic>Infertility</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Medicine and Health Sciences</topic><topic>Molecular biology</topic><topic>Molecular modelling</topic><topic>Mutation</topic><topic>Ovaries</topic><topic>Ovary - growth &amp; development</topic><topic>Ovary - metabolism</topic><topic>Physical sciences</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Helicases - genetics</topic><topic>RNA polymerase</topic><topic>RNA processing</topic><topic>RNA, Small Interfering - biosynthesis</topic><topic>RNA, Small Interfering - genetics</topic><topic>Tethering</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Radha Raman</creatorcontrib><creatorcontrib>Homolka, David</creatorcontrib><creatorcontrib>Chen, Kuan-Ming</creatorcontrib><creatorcontrib>Sachidanandam, Ravi</creatorcontrib><creatorcontrib>Fauvarque, Marie-Odile</creatorcontrib><creatorcontrib>Pillai, Ramesh S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Radha Raman</au><au>Homolka, David</au><au>Chen, Kuan-Ming</au><au>Sachidanandam, Ravi</au><au>Fauvarque, Marie-Odile</au><au>Pillai, Ramesh S</au><au>Miska, Eric A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in Drosophila ovaries</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>13</volume><issue>8</issue><spage>e1006956</spage><epage>e1006956</epage><pages>e1006956-e1006956</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Small RNAs called PIWI -interacting RNAs (piRNAs) are essential for transposon control and fertility in animals. Primary processing is the small RNA biogenesis pathway that uses long single-stranded RNA precursors to generate millions of individual piRNAs, but the molecular mechanisms that identify a transcript as a precursor are poorly understood. Here we demonstrate that artificial tethering of the piRNA biogenesis factor, Armi, to a transcript is sufficient to direct it into primary processing in Drosophila ovaries and in an ovarian cell culture model. In the fly ovarian somatic follicle cells, the transcript becomes cleaved in a stepwise manner, with a 5'→3' directionality, liberating U1-containing ~24 nt piRNAs that are loaded into Piwi. Although uridines are preferred for generation of piRNA 5' ends, processing takes place even in their absence, albeit at a lower efficiency. We show that recombinant Armi has 5'→3' helicase activity, and mutations that abolish this activity also reduce piRNA processing in vivo. Another somatic piRNA pathway factor Yb, an interactor of Armi, is also able to trigger piRNA biogenesis when tethered to a transcript. Tethering-mediated primary piRNA biogenesis is also functional in the fly ovarian germline and loads all the three PIWI proteins present in this environment. Our study finds a broad correlation between piRNA processing and localization of the tethered factors to the cytoplasmic perinuclear ribonucleoprotein granules called germline nuage or somatic Yb bodies. We conclude that transcripts bound by Armi and Yb are identified as piRNA precursors, resulting in localization to cytoplasmic processing granules and their subsequent engagement by the resident piRNA biogenesis machinery.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28827804</pmid><doi>10.1371/journal.pgen.1006956</doi><orcidid>https://orcid.org/0000-0001-9844-4459</orcidid><orcidid>https://orcid.org/0000-0003-2080-3604</orcidid><orcidid>https://orcid.org/0000-0001-5020-3701</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2017-08, Vol.13 (8), p.e1006956-e1006956
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1939438915
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Biology and Life Sciences
Biosynthesis
Cell culture
DNA helicase
DNA methylation
DNA Transposable Elements - genetics
Drosophila melanogaster - genetics
Drosophila melanogaster - growth & development
Drosophila Proteins - genetics
Evolution
Female
Fertility
Fertility - genetics
Fruit flies
Funding
Genomes
Germ Cells - growth & development
Granular materials
Infertility
Insects
Life Sciences
Localization
Medicine and Health Sciences
Molecular biology
Molecular modelling
Mutation
Ovaries
Ovary - growth & development
Ovary - metabolism
Physical sciences
Proteins
Research and Analysis Methods
Ribonucleic acid
RNA
RNA Helicases - genetics
RNA polymerase
RNA processing
RNA, Small Interfering - biosynthesis
RNA, Small Interfering - genetics
Tethering
Transcription
title Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in Drosophila ovaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recruitment%20of%20Armitage%20and%20Yb%20to%20a%20transcript%20triggers%20its%20phased%20processing%20into%20primary%20piRNAs%20in%20Drosophila%20ovaries&rft.jtitle=PLoS%20genetics&rft.au=Pandey,%20Radha%20Raman&rft.date=2017-08-01&rft.volume=13&rft.issue=8&rft.spage=e1006956&rft.epage=e1006956&rft.pages=e1006956-e1006956&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006956&rft_dat=%3Cproquest_plos_%3E1939438915%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939438915&rft_id=info:pmid/28827804&rft_doaj_id=oai_doaj_org_article_4d9c76e00d174d1389865dc1dbb86a82&rfr_iscdi=true