Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans

Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2017-08, Vol.13 (8), p.e1006949-e1006949
Hauptverfasser: Tao, Li, Zhang, Yulong, Fan, Shuru, Nobile, Clarissa J, Guan, Guobo, Huang, Guanghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006949
container_issue 8
container_start_page e1006949
container_title PLoS genetics
container_volume 13
creator Tao, Li
Zhang, Yulong
Fan, Shuru
Nobile, Clarissa J
Guan, Guobo
Huang, Guanghua
description Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways.
doi_str_mv 10.1371/journal.pgen.1006949
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1939436324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_11279d16fd9d4d0184fb9422d20edbc3</doaj_id><sourcerecordid>1927598812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-70faa4b722ba9f2ad38c2da37b0b24edf438f52820b15de059a44f675d3609d03</originalsourceid><addsrcrecordid>eNptUttu1DAUjBCIlsIfILDES3nYxdc4fkFarbisVFQkyrPl2E7ildcOdtKy38OPku1e1CKebPnMjGeOpiheIzhHhKMP6zimoPy8b22YIwhLQcWT4hwxRmacQvr0wf2seJHzGkLCKsGfF2e44hWnrDov_qzCYNukBhcDiA0YOguG5LRKdfy99U4DpZ0BlzfLxXugt9pbcOeGDujFt-8gu3Zy4EILVDDgR-Mx6NXQ3altBi7cayXbjv6kvrzGINuQj5Ru23fKA2NvrY_9xoZhx1tOI2cUUL6ejIT8snjWKJ_tq8N5Ufz8_Olm-XV2df1ltVxczTRl5TDjsFGK1hzjWokGK0MqjY0ivIY1ptY0lFQNwxWGNWLGQiYUpU3JmSElFAaSi-LtXrf3McvDfrNEgghKSoLphFjtESaqteyT26i0lVE5ef8QUytVGty0JYkQ5sKgsjHCUANRRZtaUIwNhtbUmkxaHw-_jfXGGj2FT8o_En08Ca6TbbyVjJW8LNkkcHkQSPHXaPMgNy5r670KNo4735gzUVUIT9B3_0D_n47uUTrFnJNtTmYQlLvOHVly1zl56NxEe_MwyIl0LBn5Cw461p8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1939436324</pqid></control><display><type>article</type><title>Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Tao, Li ; Zhang, Yulong ; Fan, Shuru ; Nobile, Clarissa J ; Guan, Guobo ; Huang, Guanghua</creator><creatorcontrib>Tao, Li ; Zhang, Yulong ; Fan, Shuru ; Nobile, Clarissa J ; Guan, Guobo ; Huang, Guanghua</creatorcontrib><description>Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006949</identifier><identifier>PMID: 28787458</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Biology and Life Sciences ; Candida albicans - genetics ; Candida albicans - physiology ; Carbon dioxide ; Carbon Dioxide - metabolism ; Carbon sources ; Cell culture ; Citric Acid Cycle ; Cyclic AMP ; Cyclic AMP - metabolism ; Cyclic AMP-Dependent Protein Kinases - genetics ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Deactivation ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Enzymes ; Funding ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; Gene regulation ; Genetics ; Growth rate ; Heat shock factors ; Heat Shock Transcription Factors ; Hyphae - genetics ; Hyphae - physiology ; Integration ; Kinases ; Laboratories ; Medicine and Health Sciences ; Metabolism ; Morphogenesis ; Mutation ; Physical Sciences ; Protein kinase A ; Research and Analysis Methods ; Sequence Analysis, RNA ; Signal Transduction ; Studies ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Tricarboxylic acid cycle ; Yeast</subject><ispartof>PLoS genetics, 2017-08, Vol.13 (8), p.e1006949-e1006949</ispartof><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 13(8): e1006949. https://doi.org/10.1371/journal.pgen.1006949</rights><rights>2017 Tao et al 2017 Tao et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 13(8): e1006949. https://doi.org/10.1371/journal.pgen.1006949</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-70faa4b722ba9f2ad38c2da37b0b24edf438f52820b15de059a44f675d3609d03</citedby><cites>FETCH-LOGICAL-c456t-70faa4b722ba9f2ad38c2da37b0b24edf438f52820b15de059a44f675d3609d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5567665/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5567665/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28787458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Li</creatorcontrib><creatorcontrib>Zhang, Yulong</creatorcontrib><creatorcontrib>Fan, Shuru</creatorcontrib><creatorcontrib>Nobile, Clarissa J</creatorcontrib><creatorcontrib>Guan, Guobo</creatorcontrib><creatorcontrib>Huang, Guanghua</creatorcontrib><title>Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways.</description><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Candida albicans - genetics</subject><subject>Candida albicans - physiology</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Carbon sources</subject><subject>Cell culture</subject><subject>Citric Acid Cycle</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP-Dependent Protein Kinases - genetics</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Deactivation</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enzymes</subject><subject>Funding</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene regulation</subject><subject>Genetics</subject><subject>Growth rate</subject><subject>Heat shock factors</subject><subject>Heat Shock Transcription Factors</subject><subject>Hyphae - genetics</subject><subject>Hyphae - physiology</subject><subject>Integration</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Morphogenesis</subject><subject>Mutation</subject><subject>Physical Sciences</subject><subject>Protein kinase A</subject><subject>Research and Analysis Methods</subject><subject>Sequence Analysis, RNA</subject><subject>Signal Transduction</subject><subject>Studies</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Tricarboxylic acid cycle</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUttu1DAUjBCIlsIfILDES3nYxdc4fkFarbisVFQkyrPl2E7ildcOdtKy38OPku1e1CKebPnMjGeOpiheIzhHhKMP6zimoPy8b22YIwhLQcWT4hwxRmacQvr0wf2seJHzGkLCKsGfF2e44hWnrDov_qzCYNukBhcDiA0YOguG5LRKdfy99U4DpZ0BlzfLxXugt9pbcOeGDujFt-8gu3Zy4EILVDDgR-Mx6NXQ3altBi7cayXbjv6kvrzGINuQj5Ru23fKA2NvrY_9xoZhx1tOI2cUUL6ejIT8snjWKJ_tq8N5Ufz8_Olm-XV2df1ltVxczTRl5TDjsFGK1hzjWokGK0MqjY0ivIY1ptY0lFQNwxWGNWLGQiYUpU3JmSElFAaSi-LtXrf3McvDfrNEgghKSoLphFjtESaqteyT26i0lVE5ef8QUytVGty0JYkQ5sKgsjHCUANRRZtaUIwNhtbUmkxaHw-_jfXGGj2FT8o_En08Ca6TbbyVjJW8LNkkcHkQSPHXaPMgNy5r670KNo4735gzUVUIT9B3_0D_n47uUTrFnJNtTmYQlLvOHVly1zl56NxEe_MwyIl0LBn5Cw461p8</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Tao, Li</creator><creator>Zhang, Yulong</creator><creator>Fan, Shuru</creator><creator>Nobile, Clarissa J</creator><creator>Guan, Guobo</creator><creator>Huang, Guanghua</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170801</creationdate><title>Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans</title><author>Tao, Li ; Zhang, Yulong ; Fan, Shuru ; Nobile, Clarissa J ; Guan, Guobo ; Huang, Guanghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-70faa4b722ba9f2ad38c2da37b0b24edf438f52820b15de059a44f675d3609d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Candida albicans - genetics</topic><topic>Candida albicans - physiology</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Carbon sources</topic><topic>Cell culture</topic><topic>Citric Acid Cycle</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP-Dependent Protein Kinases - genetics</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Deactivation</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enzymes</topic><topic>Funding</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene regulation</topic><topic>Genetics</topic><topic>Growth rate</topic><topic>Heat shock factors</topic><topic>Heat Shock Transcription Factors</topic><topic>Hyphae - genetics</topic><topic>Hyphae - physiology</topic><topic>Integration</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Morphogenesis</topic><topic>Mutation</topic><topic>Physical Sciences</topic><topic>Protein kinase A</topic><topic>Research and Analysis Methods</topic><topic>Sequence Analysis, RNA</topic><topic>Signal Transduction</topic><topic>Studies</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Tricarboxylic acid cycle</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Li</creatorcontrib><creatorcontrib>Zhang, Yulong</creatorcontrib><creatorcontrib>Fan, Shuru</creatorcontrib><creatorcontrib>Nobile, Clarissa J</creatorcontrib><creatorcontrib>Guan, Guobo</creatorcontrib><creatorcontrib>Huang, Guanghua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Li</au><au>Zhang, Yulong</au><au>Fan, Shuru</au><au>Nobile, Clarissa J</au><au>Guan, Guobo</au><au>Huang, Guanghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>13</volume><issue>8</issue><spage>e1006949</spage><epage>e1006949</epage><pages>e1006949-e1006949</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28787458</pmid><doi>10.1371/journal.pgen.1006949</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2017-08, Vol.13 (8), p.e1006949-e1006949
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1939436324
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Biology
Biology and Life Sciences
Candida albicans - genetics
Candida albicans - physiology
Carbon dioxide
Carbon Dioxide - metabolism
Carbon sources
Cell culture
Citric Acid Cycle
Cyclic AMP
Cyclic AMP - metabolism
Cyclic AMP-Dependent Protein Kinases - genetics
Cyclic AMP-Dependent Protein Kinases - metabolism
Deactivation
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Enzymes
Funding
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Fungal
Gene regulation
Genetics
Growth rate
Heat shock factors
Heat Shock Transcription Factors
Hyphae - genetics
Hyphae - physiology
Integration
Kinases
Laboratories
Medicine and Health Sciences
Metabolism
Morphogenesis
Mutation
Physical Sciences
Protein kinase A
Research and Analysis Methods
Sequence Analysis, RNA
Signal Transduction
Studies
Transcription Factors - genetics
Transcription Factors - metabolism
Tricarboxylic acid cycle
Yeast
title Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20the%20tricarboxylic%20acid%20(TCA)%20cycle%20with%20cAMP%20signaling%20and%20Sfl2%20pathways%20in%20the%20regulation%20of%20CO2%20sensing%20and%20hyphal%20development%20in%20Candida%20albicans&rft.jtitle=PLoS%20genetics&rft.au=Tao,%20Li&rft.date=2017-08-01&rft.volume=13&rft.issue=8&rft.spage=e1006949&rft.epage=e1006949&rft.pages=e1006949-e1006949&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006949&rft_dat=%3Cproquest_plos_%3E1927598812%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1939436324&rft_id=info:pmid/28787458&rft_doaj_id=oai_doaj_org_article_11279d16fd9d4d0184fb9422d20edbc3&rfr_iscdi=true