PI3K-C2α knockdown decreases autophagy and maturation of endocytic vesicles

Phosphoinositide 3-kinase (PI3K) family members are involved in diverse cellular fates including cell growth, proliferation, and survival. While many molecular details are known about the Class I and III PI3Ks, less is known about the Class II PI3Ks. To explore the function of all eight PI3K isoform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-09, Vol.12 (9), p.e0184909-e0184909
Hauptverfasser: Merrill, Nathan M, Schipper, Joshua L, Karnes, Jonathan B, Kauffman, Audra L, Martin, Katie R, MacKeigan, Jeffrey P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0184909
container_issue 9
container_start_page e0184909
container_title PloS one
container_volume 12
creator Merrill, Nathan M
Schipper, Joshua L
Karnes, Jonathan B
Kauffman, Audra L
Martin, Katie R
MacKeigan, Jeffrey P
description Phosphoinositide 3-kinase (PI3K) family members are involved in diverse cellular fates including cell growth, proliferation, and survival. While many molecular details are known about the Class I and III PI3Ks, less is known about the Class II PI3Ks. To explore the function of all eight PI3K isoforms in autophagy, we knock down each gene individually and measure autophagy. We find a significant decrease in autophagy following siRNA-mediated PIK3C2A (encoding the Class 2 PI3K, PI3K-C2α) knockdown. This defective autophagy is rescued by exogenous PI3K-C2α, but not kinase-dead PI3K-C2α. Using confocal microscopy, we probe for markers of endocytosis and autophagy, revealing that PI3K-C2α colocalizes with markers of endocytosis. Though endocytic uptake is intact, as demonstrated by transferrin labeling, PIK3C2A knockdown results in vesicle accumulation at the recycling endosome. We isolate distinct membrane sources and observe that PI3K-C2α interacts with markers of endocytosis and autophagy, notably ATG9. Knockdown of either PIK3C2A or ATG9A/B, but not PI3KC3, results in an accumulation of transferrin-positive clathrin coated vesicles and RAB11-positive vesicles at the recycling endosome. Taken together, these results support a role for PI3K-C2α in the proper maturation of endosomes, and suggest that PI3K-C2α may be a critical node connecting the endocytic and autophagic pathways.
doi_str_mv 10.1371/journal.pone.0184909
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1938824542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5d165154aff442db87e93232c5b08a1d</doaj_id><sourcerecordid>1943618793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-44cb61ad26bd3c3632fcf48cf2b92fab261d558561df80f7f3ef49e2e99d412c3</originalsourceid><addsrcrecordid>eNptUstuEzEUHSEqWgp_gGAkNmwm9Tv2BglFPCIitQtYWx77Op10Ygd7piifxY_wTThkWrWI1bXsc8895_pU1SuMZpjO8cUmjimYfraLAWYIS6aQelKdYUVJIwiiTx-cT6vnOW8Q4lQK8aw6JVJhRJU4q1ZXS_q1WZDfv-qbEO2Niz9D7cAmMBlybcYh7q7Nel-b4OqtGcZkhi6GOvoagot2P3S2voXc2R7yi-rEmz7Dy6meV98_ffy2-NKsLj8vFx9WjeVEDA1jthXYOCJaRy0VlHjrmbSetIp40xKBHeeSl-Il8nNPwTMFBJRyDBNLz6s3R95dH7OeFpF1sSslYZyRglgeES6ajd6lbmvSXkfT6b8XMa21ScNBtOYOC445M94zRlwr51DWRonlLZIGu8L1fpo2tltwFsKQTP-I9PFL6K71Ot5qzpUqH1MI3k0EKf4YIQ9622ULfW8CxPGgm1GB5VzRAn37D_T_7tgRZVPMOYG_F4ORPoTjrksfwqGncJS21w-N3DfdpYH-AcQMuO0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938824542</pqid></control><display><type>article</type><title>PI3K-C2α knockdown decreases autophagy and maturation of endocytic vesicles</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Merrill, Nathan M ; Schipper, Joshua L ; Karnes, Jonathan B ; Kauffman, Audra L ; Martin, Katie R ; MacKeigan, Jeffrey P</creator><contributor>Donaldson, Julie G.</contributor><creatorcontrib>Merrill, Nathan M ; Schipper, Joshua L ; Karnes, Jonathan B ; Kauffman, Audra L ; Martin, Katie R ; MacKeigan, Jeffrey P ; Donaldson, Julie G.</creatorcontrib><description>Phosphoinositide 3-kinase (PI3K) family members are involved in diverse cellular fates including cell growth, proliferation, and survival. While many molecular details are known about the Class I and III PI3Ks, less is known about the Class II PI3Ks. To explore the function of all eight PI3K isoforms in autophagy, we knock down each gene individually and measure autophagy. We find a significant decrease in autophagy following siRNA-mediated PIK3C2A (encoding the Class 2 PI3K, PI3K-C2α) knockdown. This defective autophagy is rescued by exogenous PI3K-C2α, but not kinase-dead PI3K-C2α. Using confocal microscopy, we probe for markers of endocytosis and autophagy, revealing that PI3K-C2α colocalizes with markers of endocytosis. Though endocytic uptake is intact, as demonstrated by transferrin labeling, PIK3C2A knockdown results in vesicle accumulation at the recycling endosome. We isolate distinct membrane sources and observe that PI3K-C2α interacts with markers of endocytosis and autophagy, notably ATG9. Knockdown of either PIK3C2A or ATG9A/B, but not PI3KC3, results in an accumulation of transferrin-positive clathrin coated vesicles and RAB11-positive vesicles at the recycling endosome. Taken together, these results support a role for PI3K-C2α in the proper maturation of endosomes, and suggest that PI3K-C2α may be a critical node connecting the endocytic and autophagic pathways.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0184909</identifier><identifier>PMID: 28910396</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>1-Phosphatidylinositol 3-kinase ; Accumulation ; Autophagy ; Biology ; Biology and Life Sciences ; Biomarkers - metabolism ; Cancer ; Cell death ; Cell Line ; Cell Proliferation ; Cell survival ; Clathrin ; Coated vesicles ; Confocal microscopy ; Endocytosis ; Endosomes ; Endosomes - metabolism ; Enzymes ; Gene Knockdown Techniques ; Humans ; Isoforms ; Kinases ; Markers ; Maturation ; Medical research ; Microscopy ; Phagocytosis ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Physiology ; Protein turnover ; Proteins ; RNA, Small Interfering - metabolism ; Signal Transduction ; siRNA ; Transferrin ; Transferrins ; Transport Vesicles - metabolism ; Vesicles ; Yeast</subject><ispartof>PloS one, 2017-09, Vol.12 (9), p.e0184909-e0184909</ispartof><rights>2017 Merrill et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Merrill et al 2017 Merrill et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-44cb61ad26bd3c3632fcf48cf2b92fab261d558561df80f7f3ef49e2e99d412c3</citedby><cites>FETCH-LOGICAL-c526t-44cb61ad26bd3c3632fcf48cf2b92fab261d558561df80f7f3ef49e2e99d412c3</cites><orcidid>0000-0002-0198-5679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599018/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599018/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28910396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Donaldson, Julie G.</contributor><creatorcontrib>Merrill, Nathan M</creatorcontrib><creatorcontrib>Schipper, Joshua L</creatorcontrib><creatorcontrib>Karnes, Jonathan B</creatorcontrib><creatorcontrib>Kauffman, Audra L</creatorcontrib><creatorcontrib>Martin, Katie R</creatorcontrib><creatorcontrib>MacKeigan, Jeffrey P</creatorcontrib><title>PI3K-C2α knockdown decreases autophagy and maturation of endocytic vesicles</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Phosphoinositide 3-kinase (PI3K) family members are involved in diverse cellular fates including cell growth, proliferation, and survival. While many molecular details are known about the Class I and III PI3Ks, less is known about the Class II PI3Ks. To explore the function of all eight PI3K isoforms in autophagy, we knock down each gene individually and measure autophagy. We find a significant decrease in autophagy following siRNA-mediated PIK3C2A (encoding the Class 2 PI3K, PI3K-C2α) knockdown. This defective autophagy is rescued by exogenous PI3K-C2α, but not kinase-dead PI3K-C2α. Using confocal microscopy, we probe for markers of endocytosis and autophagy, revealing that PI3K-C2α colocalizes with markers of endocytosis. Though endocytic uptake is intact, as demonstrated by transferrin labeling, PIK3C2A knockdown results in vesicle accumulation at the recycling endosome. We isolate distinct membrane sources and observe that PI3K-C2α interacts with markers of endocytosis and autophagy, notably ATG9. Knockdown of either PIK3C2A or ATG9A/B, but not PI3KC3, results in an accumulation of transferrin-positive clathrin coated vesicles and RAB11-positive vesicles at the recycling endosome. Taken together, these results support a role for PI3K-C2α in the proper maturation of endosomes, and suggest that PI3K-C2α may be a critical node connecting the endocytic and autophagic pathways.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>Accumulation</subject><subject>Autophagy</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers - metabolism</subject><subject>Cancer</subject><subject>Cell death</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Cell survival</subject><subject>Clathrin</subject><subject>Coated vesicles</subject><subject>Confocal microscopy</subject><subject>Endocytosis</subject><subject>Endosomes</subject><subject>Endosomes - metabolism</subject><subject>Enzymes</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Isoforms</subject><subject>Kinases</subject><subject>Markers</subject><subject>Maturation</subject><subject>Medical research</subject><subject>Microscopy</subject><subject>Phagocytosis</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Signal Transduction</subject><subject>siRNA</subject><subject>Transferrin</subject><subject>Transferrins</subject><subject>Transport Vesicles - metabolism</subject><subject>Vesicles</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUstuEzEUHSEqWgp_gGAkNmwm9Tv2BglFPCIitQtYWx77Op10Ygd7piifxY_wTThkWrWI1bXsc8895_pU1SuMZpjO8cUmjimYfraLAWYIS6aQelKdYUVJIwiiTx-cT6vnOW8Q4lQK8aw6JVJhRJU4q1ZXS_q1WZDfv-qbEO2Niz9D7cAmMBlybcYh7q7Nel-b4OqtGcZkhi6GOvoagot2P3S2voXc2R7yi-rEmz7Dy6meV98_ffy2-NKsLj8vFx9WjeVEDA1jthXYOCJaRy0VlHjrmbSetIp40xKBHeeSl-Il8nNPwTMFBJRyDBNLz6s3R95dH7OeFpF1sSslYZyRglgeES6ajd6lbmvSXkfT6b8XMa21ScNBtOYOC445M94zRlwr51DWRonlLZIGu8L1fpo2tltwFsKQTP-I9PFL6K71Ot5qzpUqH1MI3k0EKf4YIQ9622ULfW8CxPGgm1GB5VzRAn37D_T_7tgRZVPMOYG_F4ORPoTjrksfwqGncJS21w-N3DfdpYH-AcQMuO0</recordid><startdate>20170914</startdate><enddate>20170914</enddate><creator>Merrill, Nathan M</creator><creator>Schipper, Joshua L</creator><creator>Karnes, Jonathan B</creator><creator>Kauffman, Audra L</creator><creator>Martin, Katie R</creator><creator>MacKeigan, Jeffrey P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0198-5679</orcidid></search><sort><creationdate>20170914</creationdate><title>PI3K-C2α knockdown decreases autophagy and maturation of endocytic vesicles</title><author>Merrill, Nathan M ; Schipper, Joshua L ; Karnes, Jonathan B ; Kauffman, Audra L ; Martin, Katie R ; MacKeigan, Jeffrey P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-44cb61ad26bd3c3632fcf48cf2b92fab261d558561df80f7f3ef49e2e99d412c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>Accumulation</topic><topic>Autophagy</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers - metabolism</topic><topic>Cancer</topic><topic>Cell death</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Cell survival</topic><topic>Clathrin</topic><topic>Coated vesicles</topic><topic>Confocal microscopy</topic><topic>Endocytosis</topic><topic>Endosomes</topic><topic>Endosomes - metabolism</topic><topic>Enzymes</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Isoforms</topic><topic>Kinases</topic><topic>Markers</topic><topic>Maturation</topic><topic>Medical research</topic><topic>Microscopy</topic><topic>Phagocytosis</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Signal Transduction</topic><topic>siRNA</topic><topic>Transferrin</topic><topic>Transferrins</topic><topic>Transport Vesicles - metabolism</topic><topic>Vesicles</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merrill, Nathan M</creatorcontrib><creatorcontrib>Schipper, Joshua L</creatorcontrib><creatorcontrib>Karnes, Jonathan B</creatorcontrib><creatorcontrib>Kauffman, Audra L</creatorcontrib><creatorcontrib>Martin, Katie R</creatorcontrib><creatorcontrib>MacKeigan, Jeffrey P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merrill, Nathan M</au><au>Schipper, Joshua L</au><au>Karnes, Jonathan B</au><au>Kauffman, Audra L</au><au>Martin, Katie R</au><au>MacKeigan, Jeffrey P</au><au>Donaldson, Julie G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PI3K-C2α knockdown decreases autophagy and maturation of endocytic vesicles</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-09-14</date><risdate>2017</risdate><volume>12</volume><issue>9</issue><spage>e0184909</spage><epage>e0184909</epage><pages>e0184909-e0184909</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Phosphoinositide 3-kinase (PI3K) family members are involved in diverse cellular fates including cell growth, proliferation, and survival. While many molecular details are known about the Class I and III PI3Ks, less is known about the Class II PI3Ks. To explore the function of all eight PI3K isoforms in autophagy, we knock down each gene individually and measure autophagy. We find a significant decrease in autophagy following siRNA-mediated PIK3C2A (encoding the Class 2 PI3K, PI3K-C2α) knockdown. This defective autophagy is rescued by exogenous PI3K-C2α, but not kinase-dead PI3K-C2α. Using confocal microscopy, we probe for markers of endocytosis and autophagy, revealing that PI3K-C2α colocalizes with markers of endocytosis. Though endocytic uptake is intact, as demonstrated by transferrin labeling, PIK3C2A knockdown results in vesicle accumulation at the recycling endosome. We isolate distinct membrane sources and observe that PI3K-C2α interacts with markers of endocytosis and autophagy, notably ATG9. Knockdown of either PIK3C2A or ATG9A/B, but not PI3KC3, results in an accumulation of transferrin-positive clathrin coated vesicles and RAB11-positive vesicles at the recycling endosome. Taken together, these results support a role for PI3K-C2α in the proper maturation of endosomes, and suggest that PI3K-C2α may be a critical node connecting the endocytic and autophagic pathways.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28910396</pmid><doi>10.1371/journal.pone.0184909</doi><orcidid>https://orcid.org/0000-0002-0198-5679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-09, Vol.12 (9), p.e0184909-e0184909
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1938824542
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 1-Phosphatidylinositol 3-kinase
Accumulation
Autophagy
Biology
Biology and Life Sciences
Biomarkers - metabolism
Cancer
Cell death
Cell Line
Cell Proliferation
Cell survival
Clathrin
Coated vesicles
Confocal microscopy
Endocytosis
Endosomes
Endosomes - metabolism
Enzymes
Gene Knockdown Techniques
Humans
Isoforms
Kinases
Markers
Maturation
Medical research
Microscopy
Phagocytosis
Phosphatidylinositol 3-Kinases - genetics
Phosphatidylinositol 3-Kinases - metabolism
Phosphorylation
Physiology
Protein turnover
Proteins
RNA, Small Interfering - metabolism
Signal Transduction
siRNA
Transferrin
Transferrins
Transport Vesicles - metabolism
Vesicles
Yeast
title PI3K-C2α knockdown decreases autophagy and maturation of endocytic vesicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PI3K-C2%CE%B1%20knockdown%20decreases%20autophagy%20and%20maturation%20of%20endocytic%20vesicles&rft.jtitle=PloS%20one&rft.au=Merrill,%20Nathan%20M&rft.date=2017-09-14&rft.volume=12&rft.issue=9&rft.spage=e0184909&rft.epage=e0184909&rft.pages=e0184909-e0184909&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0184909&rft_dat=%3Cproquest_plos_%3E1943618793%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938824542&rft_id=info:pmid/28910396&rft_doaj_id=oai_doaj_org_article_5d165154aff442db87e93232c5b08a1d&rfr_iscdi=true