The human bitter taste receptor T2R38 is broadly tuned for bacterial compounds
T2R38 has been shown to be a specific bacterial detector implicated in innate immune defense mechanism of human upper airway. Several clinical studies have demonstrated that this receptor is associated with the development of chronic rhinosinusitis (CRS). T2R38 was previously reported to bind to hom...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-09, Vol.12 (9), p.e0181302-e0181302 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0181302 |
---|---|
container_issue | 9 |
container_start_page | e0181302 |
container_title | PloS one |
container_volume | 12 |
creator | Verbeurgt, Christophe Veithen, Alex Carlot, Sébastien Tarabichi, Maxime Dumont, Jacques E Hassid, Sergio Chatelain, Pierre |
description | T2R38 has been shown to be a specific bacterial detector implicated in innate immune defense mechanism of human upper airway. Several clinical studies have demonstrated that this receptor is associated with the development of chronic rhinosinusitis (CRS). T2R38 was previously reported to bind to homoserine lactones (HSL), quorum sensing molecules specific of Pseudomonas Aeruginosa and other gram negative species. Nevertheless, these bacteria are not the major pathogens found in CRS. Here we report on the identification of bacterial metabolites acting as new agonists of T2R38 based on a single cell calcium imaging study. Two quorum sensing molecules (Agr D1 thiolactone from Staphylococcus Aureus and CSP-1 from Streptococcus Pneumoniae) and a list of 32 bacterial metabolites from pathogens frequently implicated in CRS were tested. First, we observed that HSL failed to activate T2R38 in our experimental system, but that the dimethylsulfoxide (DMSO), used as a solvent for these lactones may, by itself, account for the agonistic effect previously described. Secondly, we showed that both Agr D1 thiolactone and CSP-1 are inactive but that at least 7 bacterial metabolites (acetone, 2-butanone, 2-pentanone, 2-methylpropanal, dimethyl disulfide, methylmercaptan, γ-butyrolactone) are able to specifically trigger this receptor. T2R38 is thus much more broadly tuned for bacterial compounds than previously thought. |
doi_str_mv | 10.1371/journal.pone.0181302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1938531838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ed08c05c466b4d7781f3b0b8940f609d</doaj_id><sourcerecordid>1938531838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-7dafef7d9451ef4dc5ebfdafc401ff20b59a9cc9578769a957262cea739985233</originalsourceid><addsrcrecordid>eNptUl1rFDEUHUSxtfoPRAO--LJrPiZfL0IpfhSKgqzPIZPcdGeZmYxJRui_N3WnpRWfcrn3nHPvCadpXhO8JUySD4e4pMkO2zlOsMVEEYbpk-aUaEY3gmL29EF90rzI-YAxZ0qI580JVRpTxdlp8223B7RfRjuhri8FEio2F0AJHMwlJrSjP5hCfUZditYPN6gsE3gU6qizrhJ6OyAXxzkuk88vm2fBDhlere9Z8_Pzp93F183V9y-XF-dXG8epKBvpbYAgvW45gdB6x6ELtedaTEKguOPaauc0l0qKWnJJBXVgJdNaccrYWfP2qDsPMZv1K7KphqsropiqiMsjwkd7MHPqR5tuTLS9-duI6drYVHo3gAGPlcPctUJ0rZdSkcA63Cnd4iCw9lXr47pt6UbwDqaS7PBI9PFk6vfmOv42nGtJKKkC71eBFH8tkIsZ--xgGOwEcTnerXgrW1qh7_6B_t9de0S5FHNOEO6PIdjcxuOOZW7jYdZ4VNqbh0buSXd5YH8Amx64oQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938531838</pqid></control><display><type>article</type><title>The human bitter taste receptor T2R38 is broadly tuned for bacterial compounds</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Verbeurgt, Christophe ; Veithen, Alex ; Carlot, Sébastien ; Tarabichi, Maxime ; Dumont, Jacques E ; Hassid, Sergio ; Chatelain, Pierre</creator><contributor>Kaufmann, Gunnar F</contributor><creatorcontrib>Verbeurgt, Christophe ; Veithen, Alex ; Carlot, Sébastien ; Tarabichi, Maxime ; Dumont, Jacques E ; Hassid, Sergio ; Chatelain, Pierre ; Kaufmann, Gunnar F</creatorcontrib><description>T2R38 has been shown to be a specific bacterial detector implicated in innate immune defense mechanism of human upper airway. Several clinical studies have demonstrated that this receptor is associated with the development of chronic rhinosinusitis (CRS). T2R38 was previously reported to bind to homoserine lactones (HSL), quorum sensing molecules specific of Pseudomonas Aeruginosa and other gram negative species. Nevertheless, these bacteria are not the major pathogens found in CRS. Here we report on the identification of bacterial metabolites acting as new agonists of T2R38 based on a single cell calcium imaging study. Two quorum sensing molecules (Agr D1 thiolactone from Staphylococcus Aureus and CSP-1 from Streptococcus Pneumoniae) and a list of 32 bacterial metabolites from pathogens frequently implicated in CRS were tested. First, we observed that HSL failed to activate T2R38 in our experimental system, but that the dimethylsulfoxide (DMSO), used as a solvent for these lactones may, by itself, account for the agonistic effect previously described. Secondly, we showed that both Agr D1 thiolactone and CSP-1 are inactive but that at least 7 bacterial metabolites (acetone, 2-butanone, 2-pentanone, 2-methylpropanal, dimethyl disulfide, methylmercaptan, γ-butyrolactone) are able to specifically trigger this receptor. T2R38 is thus much more broadly tuned for bacterial compounds than previously thought.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0181302</identifier><identifier>PMID: 28902853</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>4-Butyrolactone - analogs & derivatives ; 4-Butyrolactone - metabolism ; 4-Butyrolactone - pharmacology ; Acetone ; Antigens, Bacterial - immunology ; Antigens, Bacterial - metabolism ; Bacteria ; Biofilms ; Biology and Life Sciences ; Bitter taste ; Butyrolactone ; Calcium ; Calcium imaging ; Chronic Disease ; Cloning ; Dimethyl Sulfoxide - metabolism ; Dimethyl Sulfoxide - pharmacology ; Gene expression ; HEK293 Cells ; Homoserine lactones ; Hospitals ; Humans ; Immune system ; Immunity, Innate - genetics ; Interdisciplinary aspects ; Lactones ; Medicine and Health Sciences ; Metabolites ; Molecular biology ; Otolaryngology ; Pathogens ; Patients ; Pentanone ; Physical Sciences ; Pseudomonas ; Pseudomonas aeruginosa ; Quorum Sensing ; Receptors, G-Protein-Coupled - agonists ; Receptors, G-Protein-Coupled - physiology ; Research and Analysis Methods ; Respiratory tract ; Rhinitis - genetics ; Rhinitis - immunology ; Rhinosinusitis ; Sinuses ; Sinusitis - genetics ; Sinusitis - immunology ; Social Sciences ; Staphylococcus aureus - metabolism ; Streptococcus infections ; Streptococcus pneumoniae - metabolism ; Taste receptors ; Thiolactone</subject><ispartof>PloS one, 2017-09, Vol.12 (9), p.e0181302-e0181302</ispartof><rights>2017 Verbeurgt et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Verbeurgt et al 2017 Verbeurgt et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-7dafef7d9451ef4dc5ebfdafc401ff20b59a9cc9578769a957262cea739985233</citedby><cites>FETCH-LOGICAL-c526t-7dafef7d9451ef4dc5ebfdafc401ff20b59a9cc9578769a957262cea739985233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597121/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597121/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28902853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kaufmann, Gunnar F</contributor><creatorcontrib>Verbeurgt, Christophe</creatorcontrib><creatorcontrib>Veithen, Alex</creatorcontrib><creatorcontrib>Carlot, Sébastien</creatorcontrib><creatorcontrib>Tarabichi, Maxime</creatorcontrib><creatorcontrib>Dumont, Jacques E</creatorcontrib><creatorcontrib>Hassid, Sergio</creatorcontrib><creatorcontrib>Chatelain, Pierre</creatorcontrib><title>The human bitter taste receptor T2R38 is broadly tuned for bacterial compounds</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>T2R38 has been shown to be a specific bacterial detector implicated in innate immune defense mechanism of human upper airway. Several clinical studies have demonstrated that this receptor is associated with the development of chronic rhinosinusitis (CRS). T2R38 was previously reported to bind to homoserine lactones (HSL), quorum sensing molecules specific of Pseudomonas Aeruginosa and other gram negative species. Nevertheless, these bacteria are not the major pathogens found in CRS. Here we report on the identification of bacterial metabolites acting as new agonists of T2R38 based on a single cell calcium imaging study. Two quorum sensing molecules (Agr D1 thiolactone from Staphylococcus Aureus and CSP-1 from Streptococcus Pneumoniae) and a list of 32 bacterial metabolites from pathogens frequently implicated in CRS were tested. First, we observed that HSL failed to activate T2R38 in our experimental system, but that the dimethylsulfoxide (DMSO), used as a solvent for these lactones may, by itself, account for the agonistic effect previously described. Secondly, we showed that both Agr D1 thiolactone and CSP-1 are inactive but that at least 7 bacterial metabolites (acetone, 2-butanone, 2-pentanone, 2-methylpropanal, dimethyl disulfide, methylmercaptan, γ-butyrolactone) are able to specifically trigger this receptor. T2R38 is thus much more broadly tuned for bacterial compounds than previously thought.</description><subject>4-Butyrolactone - analogs & derivatives</subject><subject>4-Butyrolactone - metabolism</subject><subject>4-Butyrolactone - pharmacology</subject><subject>Acetone</subject><subject>Antigens, Bacterial - immunology</subject><subject>Antigens, Bacterial - metabolism</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Biology and Life Sciences</subject><subject>Bitter taste</subject><subject>Butyrolactone</subject><subject>Calcium</subject><subject>Calcium imaging</subject><subject>Chronic Disease</subject><subject>Cloning</subject><subject>Dimethyl Sulfoxide - metabolism</subject><subject>Dimethyl Sulfoxide - pharmacology</subject><subject>Gene expression</subject><subject>HEK293 Cells</subject><subject>Homoserine lactones</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunity, Innate - genetics</subject><subject>Interdisciplinary aspects</subject><subject>Lactones</subject><subject>Medicine and Health Sciences</subject><subject>Metabolites</subject><subject>Molecular biology</subject><subject>Otolaryngology</subject><subject>Pathogens</subject><subject>Patients</subject><subject>Pentanone</subject><subject>Physical Sciences</subject><subject>Pseudomonas</subject><subject>Pseudomonas aeruginosa</subject><subject>Quorum Sensing</subject><subject>Receptors, G-Protein-Coupled - agonists</subject><subject>Receptors, G-Protein-Coupled - physiology</subject><subject>Research and Analysis Methods</subject><subject>Respiratory tract</subject><subject>Rhinitis - genetics</subject><subject>Rhinitis - immunology</subject><subject>Rhinosinusitis</subject><subject>Sinuses</subject><subject>Sinusitis - genetics</subject><subject>Sinusitis - immunology</subject><subject>Social Sciences</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Streptococcus infections</subject><subject>Streptococcus pneumoniae - metabolism</subject><subject>Taste receptors</subject><subject>Thiolactone</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1rFDEUHUSxtfoPRAO--LJrPiZfL0IpfhSKgqzPIZPcdGeZmYxJRui_N3WnpRWfcrn3nHPvCadpXhO8JUySD4e4pMkO2zlOsMVEEYbpk-aUaEY3gmL29EF90rzI-YAxZ0qI580JVRpTxdlp8223B7RfRjuhri8FEio2F0AJHMwlJrSjP5hCfUZditYPN6gsE3gU6qizrhJ6OyAXxzkuk88vm2fBDhlere9Z8_Pzp93F183V9y-XF-dXG8epKBvpbYAgvW45gdB6x6ELtedaTEKguOPaauc0l0qKWnJJBXVgJdNaccrYWfP2qDsPMZv1K7KphqsropiqiMsjwkd7MHPqR5tuTLS9-duI6drYVHo3gAGPlcPctUJ0rZdSkcA63Cnd4iCw9lXr47pt6UbwDqaS7PBI9PFk6vfmOv42nGtJKKkC71eBFH8tkIsZ--xgGOwEcTnerXgrW1qh7_6B_t9de0S5FHNOEO6PIdjcxuOOZW7jYdZ4VNqbh0buSXd5YH8Amx64oQ</recordid><startdate>20170913</startdate><enddate>20170913</enddate><creator>Verbeurgt, Christophe</creator><creator>Veithen, Alex</creator><creator>Carlot, Sébastien</creator><creator>Tarabichi, Maxime</creator><creator>Dumont, Jacques E</creator><creator>Hassid, Sergio</creator><creator>Chatelain, Pierre</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170913</creationdate><title>The human bitter taste receptor T2R38 is broadly tuned for bacterial compounds</title><author>Verbeurgt, Christophe ; Veithen, Alex ; Carlot, Sébastien ; Tarabichi, Maxime ; Dumont, Jacques E ; Hassid, Sergio ; Chatelain, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-7dafef7d9451ef4dc5ebfdafc401ff20b59a9cc9578769a957262cea739985233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>4-Butyrolactone - analogs & derivatives</topic><topic>4-Butyrolactone - metabolism</topic><topic>4-Butyrolactone - pharmacology</topic><topic>Acetone</topic><topic>Antigens, Bacterial - immunology</topic><topic>Antigens, Bacterial - metabolism</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Biology and Life Sciences</topic><topic>Bitter taste</topic><topic>Butyrolactone</topic><topic>Calcium</topic><topic>Calcium imaging</topic><topic>Chronic Disease</topic><topic>Cloning</topic><topic>Dimethyl Sulfoxide - metabolism</topic><topic>Dimethyl Sulfoxide - pharmacology</topic><topic>Gene expression</topic><topic>HEK293 Cells</topic><topic>Homoserine lactones</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunity, Innate - genetics</topic><topic>Interdisciplinary aspects</topic><topic>Lactones</topic><topic>Medicine and Health Sciences</topic><topic>Metabolites</topic><topic>Molecular biology</topic><topic>Otolaryngology</topic><topic>Pathogens</topic><topic>Patients</topic><topic>Pentanone</topic><topic>Physical Sciences</topic><topic>Pseudomonas</topic><topic>Pseudomonas aeruginosa</topic><topic>Quorum Sensing</topic><topic>Receptors, G-Protein-Coupled - agonists</topic><topic>Receptors, G-Protein-Coupled - physiology</topic><topic>Research and Analysis Methods</topic><topic>Respiratory tract</topic><topic>Rhinitis - genetics</topic><topic>Rhinitis - immunology</topic><topic>Rhinosinusitis</topic><topic>Sinuses</topic><topic>Sinusitis - genetics</topic><topic>Sinusitis - immunology</topic><topic>Social Sciences</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Streptococcus infections</topic><topic>Streptococcus pneumoniae - metabolism</topic><topic>Taste receptors</topic><topic>Thiolactone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verbeurgt, Christophe</creatorcontrib><creatorcontrib>Veithen, Alex</creatorcontrib><creatorcontrib>Carlot, Sébastien</creatorcontrib><creatorcontrib>Tarabichi, Maxime</creatorcontrib><creatorcontrib>Dumont, Jacques E</creatorcontrib><creatorcontrib>Hassid, Sergio</creatorcontrib><creatorcontrib>Chatelain, Pierre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verbeurgt, Christophe</au><au>Veithen, Alex</au><au>Carlot, Sébastien</au><au>Tarabichi, Maxime</au><au>Dumont, Jacques E</au><au>Hassid, Sergio</au><au>Chatelain, Pierre</au><au>Kaufmann, Gunnar F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The human bitter taste receptor T2R38 is broadly tuned for bacterial compounds</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-09-13</date><risdate>2017</risdate><volume>12</volume><issue>9</issue><spage>e0181302</spage><epage>e0181302</epage><pages>e0181302-e0181302</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>T2R38 has been shown to be a specific bacterial detector implicated in innate immune defense mechanism of human upper airway. Several clinical studies have demonstrated that this receptor is associated with the development of chronic rhinosinusitis (CRS). T2R38 was previously reported to bind to homoserine lactones (HSL), quorum sensing molecules specific of Pseudomonas Aeruginosa and other gram negative species. Nevertheless, these bacteria are not the major pathogens found in CRS. Here we report on the identification of bacterial metabolites acting as new agonists of T2R38 based on a single cell calcium imaging study. Two quorum sensing molecules (Agr D1 thiolactone from Staphylococcus Aureus and CSP-1 from Streptococcus Pneumoniae) and a list of 32 bacterial metabolites from pathogens frequently implicated in CRS were tested. First, we observed that HSL failed to activate T2R38 in our experimental system, but that the dimethylsulfoxide (DMSO), used as a solvent for these lactones may, by itself, account for the agonistic effect previously described. Secondly, we showed that both Agr D1 thiolactone and CSP-1 are inactive but that at least 7 bacterial metabolites (acetone, 2-butanone, 2-pentanone, 2-methylpropanal, dimethyl disulfide, methylmercaptan, γ-butyrolactone) are able to specifically trigger this receptor. T2R38 is thus much more broadly tuned for bacterial compounds than previously thought.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28902853</pmid><doi>10.1371/journal.pone.0181302</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-09, Vol.12 (9), p.e0181302-e0181302 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1938531838 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 4-Butyrolactone - analogs & derivatives 4-Butyrolactone - metabolism 4-Butyrolactone - pharmacology Acetone Antigens, Bacterial - immunology Antigens, Bacterial - metabolism Bacteria Biofilms Biology and Life Sciences Bitter taste Butyrolactone Calcium Calcium imaging Chronic Disease Cloning Dimethyl Sulfoxide - metabolism Dimethyl Sulfoxide - pharmacology Gene expression HEK293 Cells Homoserine lactones Hospitals Humans Immune system Immunity, Innate - genetics Interdisciplinary aspects Lactones Medicine and Health Sciences Metabolites Molecular biology Otolaryngology Pathogens Patients Pentanone Physical Sciences Pseudomonas Pseudomonas aeruginosa Quorum Sensing Receptors, G-Protein-Coupled - agonists Receptors, G-Protein-Coupled - physiology Research and Analysis Methods Respiratory tract Rhinitis - genetics Rhinitis - immunology Rhinosinusitis Sinuses Sinusitis - genetics Sinusitis - immunology Social Sciences Staphylococcus aureus - metabolism Streptococcus infections Streptococcus pneumoniae - metabolism Taste receptors Thiolactone |
title | The human bitter taste receptor T2R38 is broadly tuned for bacterial compounds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20human%20bitter%20taste%20receptor%20T2R38%20is%20broadly%20tuned%20for%20bacterial%20compounds&rft.jtitle=PloS%20one&rft.au=Verbeurgt,%20Christophe&rft.date=2017-09-13&rft.volume=12&rft.issue=9&rft.spage=e0181302&rft.epage=e0181302&rft.pages=e0181302-e0181302&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0181302&rft_dat=%3Cproquest_plos_%3E1938531838%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938531838&rft_id=info:pmid/28902853&rft_doaj_id=oai_doaj_org_article_ed08c05c466b4d7781f3b0b8940f609d&rfr_iscdi=true |