Fast sparse fractal image compression

As a structure-based image compression technology, fractal image compression (FIC) has been applied not only in image coding but also in many important image processing algorithms. However, two main bottlenecks restrained the develop and application of FIC for a long time. First, the encoding phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-09, Vol.12 (9), p.e0184408-e0184408
Hauptverfasser: Wang, Jianji, Chen, Pei, Xi, Bao, Liu, Jianyi, Zhang, Yi, Yu, Shujian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0184408
container_issue 9
container_start_page e0184408
container_title PloS one
container_volume 12
creator Wang, Jianji
Chen, Pei
Xi, Bao
Liu, Jianyi
Zhang, Yi
Yu, Shujian
description As a structure-based image compression technology, fractal image compression (FIC) has been applied not only in image coding but also in many important image processing algorithms. However, two main bottlenecks restrained the develop and application of FIC for a long time. First, the encoding phase of FIC is time-consuming. Second, the quality of the reconstructed images for some images which have low structure-similarity is usually unacceptable. Based on the absolute value of Pearson's correlation coefficient (APCC), we had proposed an accelerating method to significantly speed up the encoding of FIC. In this paper, we make use of the sparse searching strategy to greatly improve the quality of the reconstructed images in FIC. We call it the sparse fractal image compression (SFIC). Furthermore, we combine both the APCC-based accelerating method and the sparse searching strategy to propose the fast sparse fractal image compression (FSFIC), which can effectively improve the two main bottlenecks of FIC. The experimental results show that the proposed algorithm greatly improves both the efficiency and effectiveness of FIC.
doi_str_mv 10.1371/journal.pone.0184408
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1936800749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7e15d891bf1e4a0d993f88e8ba0ab263</doaj_id><sourcerecordid>1937528757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-a46fbc138b9a348d9607268048f977d488b7572b37d96f3a719222d0a6520f6d3</originalsourceid><addsrcrecordid>eNptkUtrGzEUhUVpaJ7_oLSGEMjGrt662hRKSNKAIZt0Le7MSO6Y8WgqjQP991XsSUhKVhK65346h0PIZ0YXTBj2bR23qcduMcTeLygDKSl8IEfMCj7XnIqPr-6H5DjnNaVKgNafyCEHAF0oR-TiBvM4ywOm7GchYT1iN2s3uPKzOm6G5HNuY39KDgJ22Z9N5wn5dXP9cPVzvry_vbv6sZzXiutxjlKHqmYCKotCQmM1NVwDlRCsMY0EqIwyvBKmjIJAwyznvKGoFadBN-KEfN1zhy5mNyXMruQoFGqkLYq7vaKJuHZDKlbTXxexdbuHmFYO09jWnXfGM9WAZVVgXiJtrBUBwEOFFCuuRWF9n37bVhvf1L4fE3ZvoG8nffvbreKjU8pSy1UBXE6AFP9sfR7dps217zrsfdzufBvFoWQu0vP_pO-nk3tVnWLOyYcXM4y6p9aft9xT625qvax9eR3kZem5ZvEP4TKo0g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936800749</pqid></control><display><type>article</type><title>Fast sparse fractal image compression</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wang, Jianji ; Chen, Pei ; Xi, Bao ; Liu, Jianyi ; Zhang, Yi ; Yu, Shujian</creator><contributor>Zhang, Zhao</contributor><creatorcontrib>Wang, Jianji ; Chen, Pei ; Xi, Bao ; Liu, Jianyi ; Zhang, Yi ; Yu, Shujian ; Zhang, Zhao</creatorcontrib><description>As a structure-based image compression technology, fractal image compression (FIC) has been applied not only in image coding but also in many important image processing algorithms. However, two main bottlenecks restrained the develop and application of FIC for a long time. First, the encoding phase of FIC is time-consuming. Second, the quality of the reconstructed images for some images which have low structure-similarity is usually unacceptable. Based on the absolute value of Pearson's correlation coefficient (APCC), we had proposed an accelerating method to significantly speed up the encoding of FIC. In this paper, we make use of the sparse searching strategy to greatly improve the quality of the reconstructed images in FIC. We call it the sparse fractal image compression (SFIC). Furthermore, we combine both the APCC-based accelerating method and the sparse searching strategy to propose the fast sparse fractal image compression (FSFIC), which can effectively improve the two main bottlenecks of FIC. The experimental results show that the proposed algorithm greatly improves both the efficiency and effectiveness of FIC.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0184408</identifier><identifier>PMID: 28886137</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Artificial intelligence ; Biology and life sciences ; Classification ; Coding ; Compression ; Computer simulation ; Correlation coefficient ; Correlation coefficients ; Data Compression ; Dictionaries ; Engineering ; Engineering and Technology ; Fractals ; Handwriting ; Image coding ; Image compression ; Image processing ; Image Processing, Computer-Assisted ; Image quality ; Image reconstruction ; Information processing ; Laboratories ; Physical Sciences ; Quality ; Research and Analysis Methods ; Robotics ; Searching ; Signal Processing, Computer-Assisted</subject><ispartof>PloS one, 2017-09, Vol.12 (9), p.e0184408-e0184408</ispartof><rights>2017 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Wang et al 2017 Wang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-a46fbc138b9a348d9607268048f977d488b7572b37d96f3a719222d0a6520f6d3</citedby><cites>FETCH-LOGICAL-c526t-a46fbc138b9a348d9607268048f977d488b7572b37d96f3a719222d0a6520f6d3</cites><orcidid>0000-0002-4284-3933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590925/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590925/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28886137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Zhao</contributor><creatorcontrib>Wang, Jianji</creatorcontrib><creatorcontrib>Chen, Pei</creatorcontrib><creatorcontrib>Xi, Bao</creatorcontrib><creatorcontrib>Liu, Jianyi</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Yu, Shujian</creatorcontrib><title>Fast sparse fractal image compression</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>As a structure-based image compression technology, fractal image compression (FIC) has been applied not only in image coding but also in many important image processing algorithms. However, two main bottlenecks restrained the develop and application of FIC for a long time. First, the encoding phase of FIC is time-consuming. Second, the quality of the reconstructed images for some images which have low structure-similarity is usually unacceptable. Based on the absolute value of Pearson's correlation coefficient (APCC), we had proposed an accelerating method to significantly speed up the encoding of FIC. In this paper, we make use of the sparse searching strategy to greatly improve the quality of the reconstructed images in FIC. We call it the sparse fractal image compression (SFIC). Furthermore, we combine both the APCC-based accelerating method and the sparse searching strategy to propose the fast sparse fractal image compression (FSFIC), which can effectively improve the two main bottlenecks of FIC. The experimental results show that the proposed algorithm greatly improves both the efficiency and effectiveness of FIC.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biology and life sciences</subject><subject>Classification</subject><subject>Coding</subject><subject>Compression</subject><subject>Computer simulation</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Data Compression</subject><subject>Dictionaries</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Fractals</subject><subject>Handwriting</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Information processing</subject><subject>Laboratories</subject><subject>Physical Sciences</subject><subject>Quality</subject><subject>Research and Analysis Methods</subject><subject>Robotics</subject><subject>Searching</subject><subject>Signal Processing, Computer-Assisted</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkUtrGzEUhUVpaJ7_oLSGEMjGrt662hRKSNKAIZt0Le7MSO6Y8WgqjQP991XsSUhKVhK65346h0PIZ0YXTBj2bR23qcduMcTeLygDKSl8IEfMCj7XnIqPr-6H5DjnNaVKgNafyCEHAF0oR-TiBvM4ywOm7GchYT1iN2s3uPKzOm6G5HNuY39KDgJ22Z9N5wn5dXP9cPVzvry_vbv6sZzXiutxjlKHqmYCKotCQmM1NVwDlRCsMY0EqIwyvBKmjIJAwyznvKGoFadBN-KEfN1zhy5mNyXMruQoFGqkLYq7vaKJuHZDKlbTXxexdbuHmFYO09jWnXfGM9WAZVVgXiJtrBUBwEOFFCuuRWF9n37bVhvf1L4fE3ZvoG8nffvbreKjU8pSy1UBXE6AFP9sfR7dps217zrsfdzufBvFoWQu0vP_pO-nk3tVnWLOyYcXM4y6p9aft9xT625qvax9eR3kZem5ZvEP4TKo0g</recordid><startdate>20170908</startdate><enddate>20170908</enddate><creator>Wang, Jianji</creator><creator>Chen, Pei</creator><creator>Xi, Bao</creator><creator>Liu, Jianyi</creator><creator>Zhang, Yi</creator><creator>Yu, Shujian</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4284-3933</orcidid></search><sort><creationdate>20170908</creationdate><title>Fast sparse fractal image compression</title><author>Wang, Jianji ; Chen, Pei ; Xi, Bao ; Liu, Jianyi ; Zhang, Yi ; Yu, Shujian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-a46fbc138b9a348d9607268048f977d488b7572b37d96f3a719222d0a6520f6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biology and life sciences</topic><topic>Classification</topic><topic>Coding</topic><topic>Compression</topic><topic>Computer simulation</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Data Compression</topic><topic>Dictionaries</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Fractals</topic><topic>Handwriting</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Information processing</topic><topic>Laboratories</topic><topic>Physical Sciences</topic><topic>Quality</topic><topic>Research and Analysis Methods</topic><topic>Robotics</topic><topic>Searching</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianji</creatorcontrib><creatorcontrib>Chen, Pei</creatorcontrib><creatorcontrib>Xi, Bao</creatorcontrib><creatorcontrib>Liu, Jianyi</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Yu, Shujian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianji</au><au>Chen, Pei</au><au>Xi, Bao</au><au>Liu, Jianyi</au><au>Zhang, Yi</au><au>Yu, Shujian</au><au>Zhang, Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast sparse fractal image compression</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-09-08</date><risdate>2017</risdate><volume>12</volume><issue>9</issue><spage>e0184408</spage><epage>e0184408</epage><pages>e0184408-e0184408</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>As a structure-based image compression technology, fractal image compression (FIC) has been applied not only in image coding but also in many important image processing algorithms. However, two main bottlenecks restrained the develop and application of FIC for a long time. First, the encoding phase of FIC is time-consuming. Second, the quality of the reconstructed images for some images which have low structure-similarity is usually unacceptable. Based on the absolute value of Pearson's correlation coefficient (APCC), we had proposed an accelerating method to significantly speed up the encoding of FIC. In this paper, we make use of the sparse searching strategy to greatly improve the quality of the reconstructed images in FIC. We call it the sparse fractal image compression (SFIC). Furthermore, we combine both the APCC-based accelerating method and the sparse searching strategy to propose the fast sparse fractal image compression (FSFIC), which can effectively improve the two main bottlenecks of FIC. The experimental results show that the proposed algorithm greatly improves both the efficiency and effectiveness of FIC.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28886137</pmid><doi>10.1371/journal.pone.0184408</doi><orcidid>https://orcid.org/0000-0002-4284-3933</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-09, Vol.12 (9), p.e0184408-e0184408
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1936800749
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Artificial intelligence
Biology and life sciences
Classification
Coding
Compression
Computer simulation
Correlation coefficient
Correlation coefficients
Data Compression
Dictionaries
Engineering
Engineering and Technology
Fractals
Handwriting
Image coding
Image compression
Image processing
Image Processing, Computer-Assisted
Image quality
Image reconstruction
Information processing
Laboratories
Physical Sciences
Quality
Research and Analysis Methods
Robotics
Searching
Signal Processing, Computer-Assisted
title Fast sparse fractal image compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20sparse%20fractal%20image%20compression&rft.jtitle=PloS%20one&rft.au=Wang,%20Jianji&rft.date=2017-09-08&rft.volume=12&rft.issue=9&rft.spage=e0184408&rft.epage=e0184408&rft.pages=e0184408-e0184408&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0184408&rft_dat=%3Cproquest_plos_%3E1937528757%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936800749&rft_id=info:pmid/28886137&rft_doaj_id=oai_doaj_org_article_7e15d891bf1e4a0d993f88e8ba0ab263&rfr_iscdi=true