Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells

Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic β cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic β cells remains unc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-09, Vol.12 (9), p.e0184435-e0184435
Hauptverfasser: Kawada, Yukina, Asahara, Shun-Ichiro, Sugiura, Yumiko, Sato, Ayaka, Furubayashi, Ayuko, Kawamura, Mao, Bartolome, Alberto, Terashi-Suzuki, Emi, Takai, Tomoko, Kanno, Ayumi, Koyanagi-Kimura, Maki, Matsuda, Tomokazu, Hashimoto, Naoko, Kido, Yoshiaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0184435
container_issue 9
container_start_page e0184435
container_title PloS one
container_volume 12
creator Kawada, Yukina
Asahara, Shun-Ichiro
Sugiura, Yumiko
Sato, Ayaka
Furubayashi, Ayuko
Kawamura, Mao
Bartolome, Alberto
Terashi-Suzuki, Emi
Takai, Tomoko
Kanno, Ayumi
Koyanagi-Kimura, Maki
Matsuda, Tomokazu
Hashimoto, Naoko
Kido, Yoshiaki
description Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic β cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic β cells remains unclear. The involvement of epigenetic control in the onset of diabetes has also been reported. Thus, we analyzed the epigenetic control of insulin receptor substrate 2 (IRS2) expression in the MIN6 mouse insulinoma cell line. We found concomitant IRS2 up-regulation and enhanced insulin signaling in MIN6 cells, which resulted in an increase in cell proliferation. The H3K9 acetylation status of the Irs2 promoter was positively associated with IRS2 expression. Treatment of MIN6 cells with histone deacetylase inhibitors led to increased IRS2 expression, but this occurred in concert with low insulin signaling. We observed increased IRS2 lysine acetylation as a consequence of histone deacetylase inhibition, a modification that was coupled with a decrease in IRS2 tyrosine phosphorylation. These results suggest that insulin signaling in pancreatic β cells is regulated by histone deacetylases through two novel pathways affecting IRS2: the epigenetic control of IRS2 expression by H3K9 promoter acetylation, and the regulation of IRS2 activity through protein modification. The identification of the histone deacetylase isoform(s) involved in these mechanisms would be a valuable approach for the treatment of type 2 diabetes.
doi_str_mv 10.1371/journal.pone.0184435
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1936800729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3e8c70a763e94c6eb1baa5f535d0fd9b</doaj_id><sourcerecordid>1936800729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c636t-2e38c1cd32834ff2605a2e5a7182b5ddf1fb336e7091638b94edaf54113ab5343</originalsourceid><addsrcrecordid>eNptUsFu1DAQjRCIlsIfIIjEhcsutid2nAsSqgqtVIkLiKM1cSZbr7zxYiet9rf4EL6p3m5atYiTR543b94bvaJ4y9mSQ80_rcMUB_TLbRhoybiuKpDPimPegFgoweD5o_qoeJXSmjEJWqmXxZHQWisO_Lj4de7SmBnKjtDSuPOYqIy0mjyOlEo3pMm7oUxulXe5YVVeOyzHm1Bucby6wd0ekuvBRsLR2fLvn9KS9-l18aJHn-jN_J4UP7-e_Tg9X1x-_3Zx-uVyYRWocSEItOW2A6Gh6nuhmERBEmuuRSu7rud9C6CoZg1XoNumog57WXEO2Eqo4KR4f-Dd-pDMfJNksnOlGatFkxEXB0QXcG220W0w7kxAZ-4-QlwZjFm6JwOkbc2wVkBNZRW1vEWUvQTZsb5r2sz1ed42tRvqLA1jRP-E9GlncFdmFa6NlA1rFMsEH2eCGH5PlEazcWl_MBwoTHe6aymaSkCGfvgH-n931QFlY0gpUv8ghjOzz8n9lNnnxMw5yWPvHht5GLoPBtwCEEK9tg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936800729</pqid></control><display><type>article</type><title>Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kawada, Yukina ; Asahara, Shun-Ichiro ; Sugiura, Yumiko ; Sato, Ayaka ; Furubayashi, Ayuko ; Kawamura, Mao ; Bartolome, Alberto ; Terashi-Suzuki, Emi ; Takai, Tomoko ; Kanno, Ayumi ; Koyanagi-Kimura, Maki ; Matsuda, Tomokazu ; Hashimoto, Naoko ; Kido, Yoshiaki</creator><creatorcontrib>Kawada, Yukina ; Asahara, Shun-Ichiro ; Sugiura, Yumiko ; Sato, Ayaka ; Furubayashi, Ayuko ; Kawamura, Mao ; Bartolome, Alberto ; Terashi-Suzuki, Emi ; Takai, Tomoko ; Kanno, Ayumi ; Koyanagi-Kimura, Maki ; Matsuda, Tomokazu ; Hashimoto, Naoko ; Kido, Yoshiaki</creatorcontrib><description>Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic β cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic β cells remains unclear. The involvement of epigenetic control in the onset of diabetes has also been reported. Thus, we analyzed the epigenetic control of insulin receptor substrate 2 (IRS2) expression in the MIN6 mouse insulinoma cell line. We found concomitant IRS2 up-regulation and enhanced insulin signaling in MIN6 cells, which resulted in an increase in cell proliferation. The H3K9 acetylation status of the Irs2 promoter was positively associated with IRS2 expression. Treatment of MIN6 cells with histone deacetylase inhibitors led to increased IRS2 expression, but this occurred in concert with low insulin signaling. We observed increased IRS2 lysine acetylation as a consequence of histone deacetylase inhibition, a modification that was coupled with a decrease in IRS2 tyrosine phosphorylation. These results suggest that insulin signaling in pancreatic β cells is regulated by histone deacetylases through two novel pathways affecting IRS2: the epigenetic control of IRS2 expression by H3K9 promoter acetylation, and the regulation of IRS2 activity through protein modification. The identification of the histone deacetylase isoform(s) involved in these mechanisms would be a valuable approach for the treatment of type 2 diabetes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0184435</identifier><identifier>PMID: 28886131</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetylation ; Animals ; Biology and Life Sciences ; Biophysics ; Birth weight ; Cell Line, Tumor ; Cell Proliferation ; Control ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Type 2 - genetics ; Diabetes Mellitus, Type 2 - metabolism ; Disease Models, Animal ; Endocrinology ; Epigenetics ; FDA approval ; Gene Expression ; Gene Expression Regulation - drug effects ; Health sciences ; Histone deacetylase ; Histone Deacetylase Inhibitors - pharmacology ; Histone Deacetylases - metabolism ; Histones - metabolism ; Insulin ; Insulin - metabolism ; Insulin Receptor Substrate Proteins - genetics ; Insulin Receptor Substrate Proteins - metabolism ; Insulin resistance ; Insulin-Secreting Cells - metabolism ; Insulinoma ; Internal medicine ; Lysine ; Medical technology ; Medicine ; Medicine and Health Sciences ; Metabolism ; Mice ; Mice, Knockout ; Models, Biological ; Neuroendocrine tumors ; Pancreas ; Phosphorylation ; Physical Sciences ; Promoter Regions, Genetic ; Research and Analysis Methods ; Rodents ; Signal transduction ; Signal Transduction - drug effects ; Tyrosine ; University graduates</subject><ispartof>PloS one, 2017-09, Vol.12 (9), p.e0184435-e0184435</ispartof><rights>2017 Kawada et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Kawada et al 2017 Kawada et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c636t-2e38c1cd32834ff2605a2e5a7182b5ddf1fb336e7091638b94edaf54113ab5343</citedby><cites>FETCH-LOGICAL-c636t-2e38c1cd32834ff2605a2e5a7182b5ddf1fb336e7091638b94edaf54113ab5343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590960/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590960/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28886131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawada, Yukina</creatorcontrib><creatorcontrib>Asahara, Shun-Ichiro</creatorcontrib><creatorcontrib>Sugiura, Yumiko</creatorcontrib><creatorcontrib>Sato, Ayaka</creatorcontrib><creatorcontrib>Furubayashi, Ayuko</creatorcontrib><creatorcontrib>Kawamura, Mao</creatorcontrib><creatorcontrib>Bartolome, Alberto</creatorcontrib><creatorcontrib>Terashi-Suzuki, Emi</creatorcontrib><creatorcontrib>Takai, Tomoko</creatorcontrib><creatorcontrib>Kanno, Ayumi</creatorcontrib><creatorcontrib>Koyanagi-Kimura, Maki</creatorcontrib><creatorcontrib>Matsuda, Tomokazu</creatorcontrib><creatorcontrib>Hashimoto, Naoko</creatorcontrib><creatorcontrib>Kido, Yoshiaki</creatorcontrib><title>Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic β cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic β cells remains unclear. The involvement of epigenetic control in the onset of diabetes has also been reported. Thus, we analyzed the epigenetic control of insulin receptor substrate 2 (IRS2) expression in the MIN6 mouse insulinoma cell line. We found concomitant IRS2 up-regulation and enhanced insulin signaling in MIN6 cells, which resulted in an increase in cell proliferation. The H3K9 acetylation status of the Irs2 promoter was positively associated with IRS2 expression. Treatment of MIN6 cells with histone deacetylase inhibitors led to increased IRS2 expression, but this occurred in concert with low insulin signaling. We observed increased IRS2 lysine acetylation as a consequence of histone deacetylase inhibition, a modification that was coupled with a decrease in IRS2 tyrosine phosphorylation. These results suggest that insulin signaling in pancreatic β cells is regulated by histone deacetylases through two novel pathways affecting IRS2: the epigenetic control of IRS2 expression by H3K9 promoter acetylation, and the regulation of IRS2 activity through protein modification. The identification of the histone deacetylase isoform(s) involved in these mechanisms would be a valuable approach for the treatment of type 2 diabetes.</description><subject>Acetylation</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Biophysics</subject><subject>Birth weight</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Control</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Disease Models, Animal</subject><subject>Endocrinology</subject><subject>Epigenetics</subject><subject>FDA approval</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Health sciences</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Histone Deacetylases - metabolism</subject><subject>Histones - metabolism</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin Receptor Substrate Proteins - genetics</subject><subject>Insulin Receptor Substrate Proteins - metabolism</subject><subject>Insulin resistance</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>Insulinoma</subject><subject>Internal medicine</subject><subject>Lysine</subject><subject>Medical technology</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Models, Biological</subject><subject>Neuroendocrine tumors</subject><subject>Pancreas</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Promoter Regions, Genetic</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Tyrosine</subject><subject>University graduates</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUsFu1DAQjRCIlsIfIIjEhcsutid2nAsSqgqtVIkLiKM1cSZbr7zxYiet9rf4EL6p3m5atYiTR543b94bvaJ4y9mSQ80_rcMUB_TLbRhoybiuKpDPimPegFgoweD5o_qoeJXSmjEJWqmXxZHQWisO_Lj4de7SmBnKjtDSuPOYqIy0mjyOlEo3pMm7oUxulXe5YVVeOyzHm1Bucby6wd0ekuvBRsLR2fLvn9KS9-l18aJHn-jN_J4UP7-e_Tg9X1x-_3Zx-uVyYRWocSEItOW2A6Gh6nuhmERBEmuuRSu7rud9C6CoZg1XoNumog57WXEO2Eqo4KR4f-Dd-pDMfJNksnOlGatFkxEXB0QXcG220W0w7kxAZ-4-QlwZjFm6JwOkbc2wVkBNZRW1vEWUvQTZsb5r2sz1ed42tRvqLA1jRP-E9GlncFdmFa6NlA1rFMsEH2eCGH5PlEazcWl_MBwoTHe6aymaSkCGfvgH-n931QFlY0gpUv8ghjOzz8n9lNnnxMw5yWPvHht5GLoPBtwCEEK9tg</recordid><startdate>20170908</startdate><enddate>20170908</enddate><creator>Kawada, Yukina</creator><creator>Asahara, Shun-Ichiro</creator><creator>Sugiura, Yumiko</creator><creator>Sato, Ayaka</creator><creator>Furubayashi, Ayuko</creator><creator>Kawamura, Mao</creator><creator>Bartolome, Alberto</creator><creator>Terashi-Suzuki, Emi</creator><creator>Takai, Tomoko</creator><creator>Kanno, Ayumi</creator><creator>Koyanagi-Kimura, Maki</creator><creator>Matsuda, Tomokazu</creator><creator>Hashimoto, Naoko</creator><creator>Kido, Yoshiaki</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170908</creationdate><title>Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells</title><author>Kawada, Yukina ; Asahara, Shun-Ichiro ; Sugiura, Yumiko ; Sato, Ayaka ; Furubayashi, Ayuko ; Kawamura, Mao ; Bartolome, Alberto ; Terashi-Suzuki, Emi ; Takai, Tomoko ; Kanno, Ayumi ; Koyanagi-Kimura, Maki ; Matsuda, Tomokazu ; Hashimoto, Naoko ; Kido, Yoshiaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c636t-2e38c1cd32834ff2605a2e5a7182b5ddf1fb336e7091638b94edaf54113ab5343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetylation</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Biophysics</topic><topic>Birth weight</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Control</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Disease Models, Animal</topic><topic>Endocrinology</topic><topic>Epigenetics</topic><topic>FDA approval</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Health sciences</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Histone Deacetylases - metabolism</topic><topic>Histones - metabolism</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin Receptor Substrate Proteins - genetics</topic><topic>Insulin Receptor Substrate Proteins - metabolism</topic><topic>Insulin resistance</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>Insulinoma</topic><topic>Internal medicine</topic><topic>Lysine</topic><topic>Medical technology</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Models, Biological</topic><topic>Neuroendocrine tumors</topic><topic>Pancreas</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Promoter Regions, Genetic</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Tyrosine</topic><topic>University graduates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawada, Yukina</creatorcontrib><creatorcontrib>Asahara, Shun-Ichiro</creatorcontrib><creatorcontrib>Sugiura, Yumiko</creatorcontrib><creatorcontrib>Sato, Ayaka</creatorcontrib><creatorcontrib>Furubayashi, Ayuko</creatorcontrib><creatorcontrib>Kawamura, Mao</creatorcontrib><creatorcontrib>Bartolome, Alberto</creatorcontrib><creatorcontrib>Terashi-Suzuki, Emi</creatorcontrib><creatorcontrib>Takai, Tomoko</creatorcontrib><creatorcontrib>Kanno, Ayumi</creatorcontrib><creatorcontrib>Koyanagi-Kimura, Maki</creatorcontrib><creatorcontrib>Matsuda, Tomokazu</creatorcontrib><creatorcontrib>Hashimoto, Naoko</creatorcontrib><creatorcontrib>Kido, Yoshiaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawada, Yukina</au><au>Asahara, Shun-Ichiro</au><au>Sugiura, Yumiko</au><au>Sato, Ayaka</au><au>Furubayashi, Ayuko</au><au>Kawamura, Mao</au><au>Bartolome, Alberto</au><au>Terashi-Suzuki, Emi</au><au>Takai, Tomoko</au><au>Kanno, Ayumi</au><au>Koyanagi-Kimura, Maki</au><au>Matsuda, Tomokazu</au><au>Hashimoto, Naoko</au><au>Kido, Yoshiaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-09-08</date><risdate>2017</risdate><volume>12</volume><issue>9</issue><spage>e0184435</spage><epage>e0184435</epage><pages>e0184435-e0184435</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic β cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic β cells remains unclear. The involvement of epigenetic control in the onset of diabetes has also been reported. Thus, we analyzed the epigenetic control of insulin receptor substrate 2 (IRS2) expression in the MIN6 mouse insulinoma cell line. We found concomitant IRS2 up-regulation and enhanced insulin signaling in MIN6 cells, which resulted in an increase in cell proliferation. The H3K9 acetylation status of the Irs2 promoter was positively associated with IRS2 expression. Treatment of MIN6 cells with histone deacetylase inhibitors led to increased IRS2 expression, but this occurred in concert with low insulin signaling. We observed increased IRS2 lysine acetylation as a consequence of histone deacetylase inhibition, a modification that was coupled with a decrease in IRS2 tyrosine phosphorylation. These results suggest that insulin signaling in pancreatic β cells is regulated by histone deacetylases through two novel pathways affecting IRS2: the epigenetic control of IRS2 expression by H3K9 promoter acetylation, and the regulation of IRS2 activity through protein modification. The identification of the histone deacetylase isoform(s) involved in these mechanisms would be a valuable approach for the treatment of type 2 diabetes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28886131</pmid><doi>10.1371/journal.pone.0184435</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-09, Vol.12 (9), p.e0184435-e0184435
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1936800729
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acetylation
Animals
Biology and Life Sciences
Biophysics
Birth weight
Cell Line, Tumor
Cell Proliferation
Control
Diabetes
Diabetes mellitus
Diabetes Mellitus, Type 2 - genetics
Diabetes Mellitus, Type 2 - metabolism
Disease Models, Animal
Endocrinology
Epigenetics
FDA approval
Gene Expression
Gene Expression Regulation - drug effects
Health sciences
Histone deacetylase
Histone Deacetylase Inhibitors - pharmacology
Histone Deacetylases - metabolism
Histones - metabolism
Insulin
Insulin - metabolism
Insulin Receptor Substrate Proteins - genetics
Insulin Receptor Substrate Proteins - metabolism
Insulin resistance
Insulin-Secreting Cells - metabolism
Insulinoma
Internal medicine
Lysine
Medical technology
Medicine
Medicine and Health Sciences
Metabolism
Mice
Mice, Knockout
Models, Biological
Neuroendocrine tumors
Pancreas
Phosphorylation
Physical Sciences
Promoter Regions, Genetic
Research and Analysis Methods
Rodents
Signal transduction
Signal Transduction - drug effects
Tyrosine
University graduates
title Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histone%20deacetylase%20regulates%20insulin%20signaling%20via%20two%20pathways%20in%20pancreatic%20%CE%B2%20cells&rft.jtitle=PloS%20one&rft.au=Kawada,%20Yukina&rft.date=2017-09-08&rft.volume=12&rft.issue=9&rft.spage=e0184435&rft.epage=e0184435&rft.pages=e0184435-e0184435&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0184435&rft_dat=%3Cproquest_plos_%3E1936800729%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1936800729&rft_id=info:pmid/28886131&rft_doaj_id=oai_doaj_org_article_3e8c70a763e94c6eb1baa5f535d0fd9b&rfr_iscdi=true