Enhancing antibacterial effect of sodium hypochlorite by low electric current-assisted sonic agitation

This research focused on the effects of low electric current (μE)-assisted sonic agitation of sodium hypochlorite on Enterococcus faecalis infected human root dentin. Extracted human canine roots were instrumented, sterilized, and experimentally contaminated with E. faecalis. After incubation for 21...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-08, Vol.12 (8), p.e0183895-e0183895
Hauptverfasser: Maden, Murat, Ertuğrul, İhsan Furkan, Orhan, Ekim Onur, Erik, Cevat Emre, Yetiş, Ceylan Çağıl, Tuncer, Yasin, Kahriman, Mesud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research focused on the effects of low electric current (μE)-assisted sonic agitation of sodium hypochlorite on Enterococcus faecalis infected human root dentin. Extracted human canine roots were instrumented, sterilized, and experimentally contaminated with E. faecalis. After incubation for 21 days, the presence of the biofilm was confirmed by scanning electron microscopy (n = 3). Roots were randomly divided into seven groups according to decontamination procedures: G1: no treatment; G2: sterile saline; G3: 5.25% sodium hypochlorite; G4: passive ultrasonic irrigation; G5: EndoActivator (Dentsply Tulsa Dental Specialties, Tulsa, OK) agitation (EA); G6: μE agitation; and G7: μE-assisted sonic agitation. Fixed μE amperage and intensities were applied in G6 and G7. Following microbial sampling, bacterial colonies were counted using the direct plating method. Biofilm was not eradicated in any sample. The μE-assisted sonic agitation of sodium hypochlorite revealed the lowest cfu values (p0.05). Based on available evidence, the following conclusions were drawn: The μE-assisted sonic agitation increased the antibiofilm efficiency of sodium hypochlorite than passive ultrasonic irrigation and EndoActivator. The μE-assisted sonic agitation on 5.25% sodium hypochlorite is not capable to eradicate biofilms at 10mA energy level in 60s.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0183895