DNA strand breaks and TDP-43 mislocation are absent in the murine hSOD1G93A model of amyotrophic lateral sclerosis in vivo and in vitro

Mutations in the human Cu/Zn superoxide dismutase type-1 (hSOD1) gene are common in familial amyotrophic lateral sclerosis (fALS). The pathophysiology has been linked to, e.g., organelle dysfunction, RNA metabolism and oxidative DNA damage conferred by SOD1 malfunction. However, apart from metabolic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017, Vol.12 (8), p.e0183684-e0183684
Hauptverfasser: Penndorf, Diane, Tadić, Vedrana, Witte, Otto W, Grosskreutz, Julian, Kretz, Alexandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0183684
container_issue 8
container_start_page e0183684
container_title PloS one
container_volume 12
creator Penndorf, Diane
Tadić, Vedrana
Witte, Otto W
Grosskreutz, Julian
Kretz, Alexandra
description Mutations in the human Cu/Zn superoxide dismutase type-1 (hSOD1) gene are common in familial amyotrophic lateral sclerosis (fALS). The pathophysiology has been linked to, e.g., organelle dysfunction, RNA metabolism and oxidative DNA damage conferred by SOD1 malfunction. However, apart from metabolically evoked DNA oxidation, it is unclear whether severe genotoxicity including DNA single-strand breaks (SSBs) and double-strand breaks (DSBs), originates from loss of function of nuclear SOD1 enzyme. Factors that endogenously interfere with DNA integrity and repair complexes in hSOD1-mediated fALS remain similarly unexplored. In this regard, uncontrolled activation of transposable elements (TEs) might contribute to DNA disintegration and neurodegeneration. The aim of this study was to elucidate the role of the fALS-causing hSOD1G93A mutation in the generation of severe DNA damage beyond well-characterized DNA base oxidation. Therefore, DNA damage was assessed in spinal tissue of hSOD1G93A-overexpressing mice and in corresponding motor neuron-enriched cell cultures in vitro. Overexpression of the hSOD1G93A locus did not change the threshold for severe DNA damage per se. We found that levels of SSBs and DSBs were unaltered between hSOD1G93A and control conditions, as demonstrated in post-mitotic motor neurons and in astrocytes susceptible to replication-dependent DNA breakage. Analogously, parameters indicative of DNA damage response processes were not activated in vivo or in vitro. Evidence for a mutation-related elevation in TE activation was not detected, in accordance with the absence of TAR DNA binding protein 43 (TDP-43) proteinopathy in terms of cytoplasmic mislocation or nuclear loss, as nuclear TDP-43 is supposed to silence TEs physiologically. Conclusively, the superoxide dismutase function of SOD1 might not be required to preserve DNA integrity in motor neurons, at least when the function of TDP-43 is unaltered. Our data establish a foundation for further investigations addressing functional TDP-43 interaction with ALS-relevant genetic mutations.
doi_str_mv 10.1371/journal.pone.0183684
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1931688587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2620469c81a349998724c3f71e7dc42b</doaj_id><sourcerecordid>1932166543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3714-45fa505924507a189fa707e2deb15aecc3880e49d8cf9103b7468c96d10e988b3</originalsourceid><addsrcrecordid>eNptUttu1DAUjBCIXuAPEFjihZcsvsWxX5BWXSiVKopEebYc56TrJYm3drJSv4DfrrObVi3iyUf2nDlnxpNl7wheEFaSzxs_ht60i63vYYGJZELyF9kxUYzmgmL28kl9lJ3EuMG4YFKI19kRlZJRwchx9nf1Y4niEExfoyqA-RPRVF6vfuacoc7F1lszON8jEwCZKkI_INejYQ2oG4PrAa1_Xa3IuWJL1PkaWuQbZLo7PwS_XTuLWjNAMC2KtoXgo4tT-87t_H7Qvk7QN9mrxrQR3s7nafb729frs-_55dX5xdnyMrdJM8950ZgCF4ryApeGSNWYEpdAa6hIYcBaJiUGrmppG0Uwq0oupFWiJhiUlBU7zT4ceLetj3r2MOrkFBFSFrJMiIsDovZmo7fBdSbcaW-c3l_4cKNNGFxSo2nylgtlJTGMK6VkSbllTUmgrC2n07Qv87Sx6qC2ybxkxTPS5y-9W-sbv9NFISQtSSL4NBMEfztCHHT6Egtta3rw435vSoQoOEvQj_9A_6-OH1A2_UUM0DwuQ7CecvXQpadc6TlXqe39UyGPTQ9BYvfh6cpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931688587</pqid></control><display><type>article</type><title>DNA strand breaks and TDP-43 mislocation are absent in the murine hSOD1G93A model of amyotrophic lateral sclerosis in vivo and in vitro</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Penndorf, Diane ; Tadić, Vedrana ; Witte, Otto W ; Grosskreutz, Julian ; Kretz, Alexandra</creator><contributor>Buratti, Emanuele</contributor><creatorcontrib>Penndorf, Diane ; Tadić, Vedrana ; Witte, Otto W ; Grosskreutz, Julian ; Kretz, Alexandra ; Buratti, Emanuele</creatorcontrib><description>Mutations in the human Cu/Zn superoxide dismutase type-1 (hSOD1) gene are common in familial amyotrophic lateral sclerosis (fALS). The pathophysiology has been linked to, e.g., organelle dysfunction, RNA metabolism and oxidative DNA damage conferred by SOD1 malfunction. However, apart from metabolically evoked DNA oxidation, it is unclear whether severe genotoxicity including DNA single-strand breaks (SSBs) and double-strand breaks (DSBs), originates from loss of function of nuclear SOD1 enzyme. Factors that endogenously interfere with DNA integrity and repair complexes in hSOD1-mediated fALS remain similarly unexplored. In this regard, uncontrolled activation of transposable elements (TEs) might contribute to DNA disintegration and neurodegeneration. The aim of this study was to elucidate the role of the fALS-causing hSOD1G93A mutation in the generation of severe DNA damage beyond well-characterized DNA base oxidation. Therefore, DNA damage was assessed in spinal tissue of hSOD1G93A-overexpressing mice and in corresponding motor neuron-enriched cell cultures in vitro. Overexpression of the hSOD1G93A locus did not change the threshold for severe DNA damage per se. We found that levels of SSBs and DSBs were unaltered between hSOD1G93A and control conditions, as demonstrated in post-mitotic motor neurons and in astrocytes susceptible to replication-dependent DNA breakage. Analogously, parameters indicative of DNA damage response processes were not activated in vivo or in vitro. Evidence for a mutation-related elevation in TE activation was not detected, in accordance with the absence of TAR DNA binding protein 43 (TDP-43) proteinopathy in terms of cytoplasmic mislocation or nuclear loss, as nuclear TDP-43 is supposed to silence TEs physiologically. Conclusively, the superoxide dismutase function of SOD1 might not be required to preserve DNA integrity in motor neurons, at least when the function of TDP-43 is unaltered. Our data establish a foundation for further investigations addressing functional TDP-43 interaction with ALS-relevant genetic mutations.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0183684</identifier><identifier>PMID: 28832631</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - genetics ; Amyotrophic Lateral Sclerosis - pathology ; Animals ; Astrocytes ; Biology and life sciences ; Biotechnology ; Breakage ; Comet Assay ; Damage assessment ; Deoxyribonucleic acid ; Disease Models, Animal ; Disintegration ; DNA ; DNA biosynthesis ; DNA Damage ; DNA methylation ; DNA Repair ; DNA Transposable Elements ; DNA-Binding Proteins - metabolism ; Genotoxicity ; In vitro methods and tests ; In Vitro Techniques ; Integrity ; Male ; Medicine and Health Sciences ; Metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Motor neurons ; Motor Neurons - physiology ; Motor task performance ; Mutation ; Neurodegeneration ; Neurons ; Oxidation ; Oxidative metabolism ; Real-Time Polymerase Chain Reaction ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; Silence ; Spinal Cord - metabolism ; Spinal Cord - pathology ; Superoxide dismutase ; Superoxide Dismutase-1 - genetics ; Zinc</subject><ispartof>PloS one, 2017, Vol.12 (8), p.e0183684-e0183684</ispartof><rights>2017 Penndorf et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Penndorf et al 2017 Penndorf et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3714-45fa505924507a189fa707e2deb15aecc3880e49d8cf9103b7468c96d10e988b3</citedby><cites>FETCH-LOGICAL-c3714-45fa505924507a189fa707e2deb15aecc3880e49d8cf9103b7468c96d10e988b3</cites><orcidid>0000-0001-5880-603X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568271/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568271/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,4010,23845,27900,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28832631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Buratti, Emanuele</contributor><creatorcontrib>Penndorf, Diane</creatorcontrib><creatorcontrib>Tadić, Vedrana</creatorcontrib><creatorcontrib>Witte, Otto W</creatorcontrib><creatorcontrib>Grosskreutz, Julian</creatorcontrib><creatorcontrib>Kretz, Alexandra</creatorcontrib><title>DNA strand breaks and TDP-43 mislocation are absent in the murine hSOD1G93A model of amyotrophic lateral sclerosis in vivo and in vitro</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mutations in the human Cu/Zn superoxide dismutase type-1 (hSOD1) gene are common in familial amyotrophic lateral sclerosis (fALS). The pathophysiology has been linked to, e.g., organelle dysfunction, RNA metabolism and oxidative DNA damage conferred by SOD1 malfunction. However, apart from metabolically evoked DNA oxidation, it is unclear whether severe genotoxicity including DNA single-strand breaks (SSBs) and double-strand breaks (DSBs), originates from loss of function of nuclear SOD1 enzyme. Factors that endogenously interfere with DNA integrity and repair complexes in hSOD1-mediated fALS remain similarly unexplored. In this regard, uncontrolled activation of transposable elements (TEs) might contribute to DNA disintegration and neurodegeneration. The aim of this study was to elucidate the role of the fALS-causing hSOD1G93A mutation in the generation of severe DNA damage beyond well-characterized DNA base oxidation. Therefore, DNA damage was assessed in spinal tissue of hSOD1G93A-overexpressing mice and in corresponding motor neuron-enriched cell cultures in vitro. Overexpression of the hSOD1G93A locus did not change the threshold for severe DNA damage per se. We found that levels of SSBs and DSBs were unaltered between hSOD1G93A and control conditions, as demonstrated in post-mitotic motor neurons and in astrocytes susceptible to replication-dependent DNA breakage. Analogously, parameters indicative of DNA damage response processes were not activated in vivo or in vitro. Evidence for a mutation-related elevation in TE activation was not detected, in accordance with the absence of TAR DNA binding protein 43 (TDP-43) proteinopathy in terms of cytoplasmic mislocation or nuclear loss, as nuclear TDP-43 is supposed to silence TEs physiologically. Conclusively, the superoxide dismutase function of SOD1 might not be required to preserve DNA integrity in motor neurons, at least when the function of TDP-43 is unaltered. Our data establish a foundation for further investigations addressing functional TDP-43 interaction with ALS-relevant genetic mutations.</description><subject>Activation</subject><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Amyotrophic Lateral Sclerosis - pathology</subject><subject>Animals</subject><subject>Astrocytes</subject><subject>Biology and life sciences</subject><subject>Biotechnology</subject><subject>Breakage</subject><subject>Comet Assay</subject><subject>Damage assessment</subject><subject>Deoxyribonucleic acid</subject><subject>Disease Models, Animal</subject><subject>Disintegration</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Damage</subject><subject>DNA methylation</subject><subject>DNA Repair</subject><subject>DNA Transposable Elements</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Genotoxicity</subject><subject>In vitro methods and tests</subject><subject>In Vitro Techniques</subject><subject>Integrity</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Motor neurons</subject><subject>Motor Neurons - physiology</subject><subject>Motor task performance</subject><subject>Mutation</subject><subject>Neurodegeneration</subject><subject>Neurons</subject><subject>Oxidation</subject><subject>Oxidative metabolism</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Silence</subject><subject>Spinal Cord - metabolism</subject><subject>Spinal Cord - pathology</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase-1 - genetics</subject><subject>Zinc</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUttu1DAUjBCIXuAPEFjihZcsvsWxX5BWXSiVKopEebYc56TrJYm3drJSv4DfrrObVi3iyUf2nDlnxpNl7wheEFaSzxs_ht60i63vYYGJZELyF9kxUYzmgmL28kl9lJ3EuMG4YFKI19kRlZJRwchx9nf1Y4niEExfoyqA-RPRVF6vfuacoc7F1lszON8jEwCZKkI_INejYQ2oG4PrAa1_Xa3IuWJL1PkaWuQbZLo7PwS_XTuLWjNAMC2KtoXgo4tT-87t_H7Qvk7QN9mrxrQR3s7nafb729frs-_55dX5xdnyMrdJM8950ZgCF4ryApeGSNWYEpdAa6hIYcBaJiUGrmppG0Uwq0oupFWiJhiUlBU7zT4ceLetj3r2MOrkFBFSFrJMiIsDovZmo7fBdSbcaW-c3l_4cKNNGFxSo2nylgtlJTGMK6VkSbllTUmgrC2n07Qv87Sx6qC2ybxkxTPS5y-9W-sbv9NFISQtSSL4NBMEfztCHHT6Egtta3rw435vSoQoOEvQj_9A_6-OH1A2_UUM0DwuQ7CecvXQpadc6TlXqe39UyGPTQ9BYvfh6cpQ</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Penndorf, Diane</creator><creator>Tadić, Vedrana</creator><creator>Witte, Otto W</creator><creator>Grosskreutz, Julian</creator><creator>Kretz, Alexandra</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5880-603X</orcidid></search><sort><creationdate>2017</creationdate><title>DNA strand breaks and TDP-43 mislocation are absent in the murine hSOD1G93A model of amyotrophic lateral sclerosis in vivo and in vitro</title><author>Penndorf, Diane ; Tadić, Vedrana ; Witte, Otto W ; Grosskreutz, Julian ; Kretz, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3714-45fa505924507a189fa707e2deb15aecc3880e49d8cf9103b7468c96d10e988b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Amyotrophic Lateral Sclerosis - pathology</topic><topic>Animals</topic><topic>Astrocytes</topic><topic>Biology and life sciences</topic><topic>Biotechnology</topic><topic>Breakage</topic><topic>Comet Assay</topic><topic>Damage assessment</topic><topic>Deoxyribonucleic acid</topic><topic>Disease Models, Animal</topic><topic>Disintegration</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Damage</topic><topic>DNA methylation</topic><topic>DNA Repair</topic><topic>DNA Transposable Elements</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Genotoxicity</topic><topic>In vitro methods and tests</topic><topic>In Vitro Techniques</topic><topic>Integrity</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Motor neurons</topic><topic>Motor Neurons - physiology</topic><topic>Motor task performance</topic><topic>Mutation</topic><topic>Neurodegeneration</topic><topic>Neurons</topic><topic>Oxidation</topic><topic>Oxidative metabolism</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Silence</topic><topic>Spinal Cord - metabolism</topic><topic>Spinal Cord - pathology</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase-1 - genetics</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penndorf, Diane</creatorcontrib><creatorcontrib>Tadić, Vedrana</creatorcontrib><creatorcontrib>Witte, Otto W</creatorcontrib><creatorcontrib>Grosskreutz, Julian</creatorcontrib><creatorcontrib>Kretz, Alexandra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penndorf, Diane</au><au>Tadić, Vedrana</au><au>Witte, Otto W</au><au>Grosskreutz, Julian</au><au>Kretz, Alexandra</au><au>Buratti, Emanuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA strand breaks and TDP-43 mislocation are absent in the murine hSOD1G93A model of amyotrophic lateral sclerosis in vivo and in vitro</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017</date><risdate>2017</risdate><volume>12</volume><issue>8</issue><spage>e0183684</spage><epage>e0183684</epage><pages>e0183684-e0183684</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mutations in the human Cu/Zn superoxide dismutase type-1 (hSOD1) gene are common in familial amyotrophic lateral sclerosis (fALS). The pathophysiology has been linked to, e.g., organelle dysfunction, RNA metabolism and oxidative DNA damage conferred by SOD1 malfunction. However, apart from metabolically evoked DNA oxidation, it is unclear whether severe genotoxicity including DNA single-strand breaks (SSBs) and double-strand breaks (DSBs), originates from loss of function of nuclear SOD1 enzyme. Factors that endogenously interfere with DNA integrity and repair complexes in hSOD1-mediated fALS remain similarly unexplored. In this regard, uncontrolled activation of transposable elements (TEs) might contribute to DNA disintegration and neurodegeneration. The aim of this study was to elucidate the role of the fALS-causing hSOD1G93A mutation in the generation of severe DNA damage beyond well-characterized DNA base oxidation. Therefore, DNA damage was assessed in spinal tissue of hSOD1G93A-overexpressing mice and in corresponding motor neuron-enriched cell cultures in vitro. Overexpression of the hSOD1G93A locus did not change the threshold for severe DNA damage per se. We found that levels of SSBs and DSBs were unaltered between hSOD1G93A and control conditions, as demonstrated in post-mitotic motor neurons and in astrocytes susceptible to replication-dependent DNA breakage. Analogously, parameters indicative of DNA damage response processes were not activated in vivo or in vitro. Evidence for a mutation-related elevation in TE activation was not detected, in accordance with the absence of TAR DNA binding protein 43 (TDP-43) proteinopathy in terms of cytoplasmic mislocation or nuclear loss, as nuclear TDP-43 is supposed to silence TEs physiologically. Conclusively, the superoxide dismutase function of SOD1 might not be required to preserve DNA integrity in motor neurons, at least when the function of TDP-43 is unaltered. Our data establish a foundation for further investigations addressing functional TDP-43 interaction with ALS-relevant genetic mutations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28832631</pmid><doi>10.1371/journal.pone.0183684</doi><orcidid>https://orcid.org/0000-0001-5880-603X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017, Vol.12 (8), p.e0183684-e0183684
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1931688587
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Activation
Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - genetics
Amyotrophic Lateral Sclerosis - pathology
Animals
Astrocytes
Biology and life sciences
Biotechnology
Breakage
Comet Assay
Damage assessment
Deoxyribonucleic acid
Disease Models, Animal
Disintegration
DNA
DNA biosynthesis
DNA Damage
DNA methylation
DNA Repair
DNA Transposable Elements
DNA-Binding Proteins - metabolism
Genotoxicity
In vitro methods and tests
In Vitro Techniques
Integrity
Male
Medicine and Health Sciences
Metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Motor neurons
Motor Neurons - physiology
Motor task performance
Mutation
Neurodegeneration
Neurons
Oxidation
Oxidative metabolism
Real-Time Polymerase Chain Reaction
Research and Analysis Methods
Ribonucleic acid
RNA
Silence
Spinal Cord - metabolism
Spinal Cord - pathology
Superoxide dismutase
Superoxide Dismutase-1 - genetics
Zinc
title DNA strand breaks and TDP-43 mislocation are absent in the murine hSOD1G93A model of amyotrophic lateral sclerosis in vivo and in vitro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20strand%20breaks%20and%20TDP-43%20mislocation%20are%20absent%20in%20the%20murine%20hSOD1G93A%20model%20of%20amyotrophic%20lateral%20sclerosis%20in%20vivo%20and%20in%20vitro&rft.jtitle=PloS%20one&rft.au=Penndorf,%20Diane&rft.date=2017&rft.volume=12&rft.issue=8&rft.spage=e0183684&rft.epage=e0183684&rft.pages=e0183684-e0183684&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0183684&rft_dat=%3Cproquest_plos_%3E1932166543%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1931688587&rft_id=info:pmid/28832631&rft_doaj_id=oai_doaj_org_article_2620469c81a349998724c3f71e7dc42b&rfr_iscdi=true