Population activity structure of excitatory and inhibitory neurons
Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activit...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-08, Vol.12 (8), p.e0181773 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e0181773 |
container_title | PloS one |
container_volume | 12 |
creator | Bittner, Sean R Williamson, Ryan C Snyder, Adam C Litwin-Kumar, Ashok Doiron, Brent Chase, Steven M Smith, Matthew A Yu, Byron M |
description | Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. |
doi_str_mv | 10.1371/journal.pone.0181773 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1930441969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A501760081</galeid><doaj_id>oai_doaj_org_article_6555ce60929b41a3bc84d448e7725786</doaj_id><sourcerecordid>A501760081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c4c4f8a6016c9a54404b6184c780fe5d1223c20ac5e6c5fc31785df9e71f3b213</originalsourceid><addsrcrecordid>eNqNkltr2zAUx83YWC_bNxibYTC2h2SSdfXLoCu7BAodu70KWZYSBUdKJbk0375y45Z49GHoQbff-R-do39RvIJgDhGDH9e-D0528613eg4gh4yhJ8UxrFE1oxVATw_WR8VJjGsACOKUPi-OKp5xwuFx8fmH3_adTNa7Uqpkr23alTGFXqU-6NKbUt8om2TyYVdK15bWrWxj77ZO98G7-KJ4ZmQX9ctxPi3-fP3y-_z77OLy2-L87GKmaF2lmcIKGy4pgFTVkmAMcEMhx4pxYDRpYVUhVQGpiKaKGIUg46Q1tWbQoKaC6LR4s9fddj6KsfwocpEAY1jTOhOLPdF6uRbbYDcy7ISXVtwd-LAUMiSrOi0oIURpCuqqbjCUqFEctxhzzVhFGKdZ69OYrW82ulXapSC7iej0xtmVWPprQQgFhKAs8H4UCP6q1zGJjY1Kd5102vfjuxmHCGf07T_o49WN1FLmAqwzPudVg6g4IwAyCgAfujR_hMqj1RursleMzeeTgA-TgMwkfZOWso9RLH79_H_28u-UfXfArrTs0ir6rh-sFqcg3oMq-BiDNg9NhkAMVr_vhhisLkar57DXhx_0EHTvbXQL8Bv34g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930441969</pqid></control><display><type>article</type><title>Population activity structure of excitatory and inhibitory neurons</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS) Journals Open Acc</source><creator>Bittner, Sean R ; Williamson, Ryan C ; Snyder, Adam C ; Litwin-Kumar, Ashok ; Doiron, Brent ; Chase, Steven M ; Smith, Matthew A ; Yu, Byron M</creator><creatorcontrib>Bittner, Sean R ; Williamson, Ryan C ; Snyder, Adam C ; Litwin-Kumar, Ashok ; Doiron, Brent ; Chase, Steven M ; Smith, Matthew A ; Yu, Byron M</creatorcontrib><description>Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0181773</identifier><identifier>PMID: 28817581</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Animals ; Biology and Life Sciences ; Biomedical engineering ; Classification ; Cluster Analysis ; Clustering ; Cognition & reasoning ; Computer and Information Sciences ; Computer engineering ; Excitation ; Excitatory Postsynaptic Potentials ; Factor analysis ; Firing pattern ; Inhibitory Postsynaptic Potentials ; Macaca ; Medicine and Health Sciences ; Methods ; Models, Neurological ; Neurons ; Neurons - physiology ; Neurosciences ; Physical Sciences ; Physiological aspects ; Population ; Population (statistical) ; Population studies ; Research and Analysis Methods ; Statistical analysis ; Statistical tests ; Structure ; Structure-function relationships ; Visual cortex ; Visual Cortex - physiology ; Visual perception</subject><ispartof>PloS one, 2017-08, Vol.12 (8), p.e0181773</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Bittner et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Bittner et al 2017 Bittner et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c4c4f8a6016c9a54404b6184c780fe5d1223c20ac5e6c5fc31785df9e71f3b213</citedby><cites>FETCH-LOGICAL-c692t-c4c4f8a6016c9a54404b6184c780fe5d1223c20ac5e6c5fc31785df9e71f3b213</cites><orcidid>0000-0003-1794-035X ; 0000-0002-6773-5402 ; 0000-0003-4450-6313 ; 0000-0003-2422-6576 ; 0000-0001-9558-9513 ; 0000-0003-1192-9942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560553/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560553/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28817581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bittner, Sean R</creatorcontrib><creatorcontrib>Williamson, Ryan C</creatorcontrib><creatorcontrib>Snyder, Adam C</creatorcontrib><creatorcontrib>Litwin-Kumar, Ashok</creatorcontrib><creatorcontrib>Doiron, Brent</creatorcontrib><creatorcontrib>Chase, Steven M</creatorcontrib><creatorcontrib>Smith, Matthew A</creatorcontrib><creatorcontrib>Yu, Byron M</creatorcontrib><title>Population activity structure of excitatory and inhibitory neurons</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Classification</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Cognition & reasoning</subject><subject>Computer and Information Sciences</subject><subject>Computer engineering</subject><subject>Excitation</subject><subject>Excitatory Postsynaptic Potentials</subject><subject>Factor analysis</subject><subject>Firing pattern</subject><subject>Inhibitory Postsynaptic Potentials</subject><subject>Macaca</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Models, Neurological</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Population</subject><subject>Population (statistical)</subject><subject>Population studies</subject><subject>Research and Analysis Methods</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Structure</subject><subject>Structure-function relationships</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><subject>Visual perception</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltr2zAUx83YWC_bNxibYTC2h2SSdfXLoCu7BAodu70KWZYSBUdKJbk0375y45Z49GHoQbff-R-do39RvIJgDhGDH9e-D0528613eg4gh4yhJ8UxrFE1oxVATw_WR8VJjGsACOKUPi-OKp5xwuFx8fmH3_adTNa7Uqpkr23alTGFXqU-6NKbUt8om2TyYVdK15bWrWxj77ZO98G7-KJ4ZmQX9ctxPi3-fP3y-_z77OLy2-L87GKmaF2lmcIKGy4pgFTVkmAMcEMhx4pxYDRpYVUhVQGpiKaKGIUg46Q1tWbQoKaC6LR4s9fddj6KsfwocpEAY1jTOhOLPdF6uRbbYDcy7ISXVtwd-LAUMiSrOi0oIURpCuqqbjCUqFEctxhzzVhFGKdZ69OYrW82ulXapSC7iej0xtmVWPprQQgFhKAs8H4UCP6q1zGJjY1Kd5102vfjuxmHCGf07T_o49WN1FLmAqwzPudVg6g4IwAyCgAfujR_hMqj1RursleMzeeTgA-TgMwkfZOWso9RLH79_H_28u-UfXfArrTs0ir6rh-sFqcg3oMq-BiDNg9NhkAMVr_vhhisLkar57DXhx_0EHTvbXQL8Bv34g</recordid><startdate>20170817</startdate><enddate>20170817</enddate><creator>Bittner, Sean R</creator><creator>Williamson, Ryan C</creator><creator>Snyder, Adam C</creator><creator>Litwin-Kumar, Ashok</creator><creator>Doiron, Brent</creator><creator>Chase, Steven M</creator><creator>Smith, Matthew A</creator><creator>Yu, Byron M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1794-035X</orcidid><orcidid>https://orcid.org/0000-0002-6773-5402</orcidid><orcidid>https://orcid.org/0000-0003-4450-6313</orcidid><orcidid>https://orcid.org/0000-0003-2422-6576</orcidid><orcidid>https://orcid.org/0000-0001-9558-9513</orcidid><orcidid>https://orcid.org/0000-0003-1192-9942</orcidid></search><sort><creationdate>20170817</creationdate><title>Population activity structure of excitatory and inhibitory neurons</title><author>Bittner, Sean R ; Williamson, Ryan C ; Snyder, Adam C ; Litwin-Kumar, Ashok ; Doiron, Brent ; Chase, Steven M ; Smith, Matthew A ; Yu, Byron M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c4c4f8a6016c9a54404b6184c780fe5d1223c20ac5e6c5fc31785df9e71f3b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Classification</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Cognition & reasoning</topic><topic>Computer and Information Sciences</topic><topic>Computer engineering</topic><topic>Excitation</topic><topic>Excitatory Postsynaptic Potentials</topic><topic>Factor analysis</topic><topic>Firing pattern</topic><topic>Inhibitory Postsynaptic Potentials</topic><topic>Macaca</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Models, Neurological</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Population</topic><topic>Population (statistical)</topic><topic>Population studies</topic><topic>Research and Analysis Methods</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Structure</topic><topic>Structure-function relationships</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bittner, Sean R</creatorcontrib><creatorcontrib>Williamson, Ryan C</creatorcontrib><creatorcontrib>Snyder, Adam C</creatorcontrib><creatorcontrib>Litwin-Kumar, Ashok</creatorcontrib><creatorcontrib>Doiron, Brent</creatorcontrib><creatorcontrib>Chase, Steven M</creatorcontrib><creatorcontrib>Smith, Matthew A</creatorcontrib><creatorcontrib>Yu, Byron M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bittner, Sean R</au><au>Williamson, Ryan C</au><au>Snyder, Adam C</au><au>Litwin-Kumar, Ashok</au><au>Doiron, Brent</au><au>Chase, Steven M</au><au>Smith, Matthew A</au><au>Yu, Byron M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population activity structure of excitatory and inhibitory neurons</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-08-17</date><risdate>2017</risdate><volume>12</volume><issue>8</issue><spage>e0181773</spage><pages>e0181773-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28817581</pmid><doi>10.1371/journal.pone.0181773</doi><tpages>e0181773</tpages><orcidid>https://orcid.org/0000-0003-1794-035X</orcidid><orcidid>https://orcid.org/0000-0002-6773-5402</orcidid><orcidid>https://orcid.org/0000-0003-4450-6313</orcidid><orcidid>https://orcid.org/0000-0003-2422-6576</orcidid><orcidid>https://orcid.org/0000-0001-9558-9513</orcidid><orcidid>https://orcid.org/0000-0003-1192-9942</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-08, Vol.12 (8), p.e0181773 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1930441969 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) Journals Open Acc |
subjects | Algorithms Analysis Animals Biology and Life Sciences Biomedical engineering Classification Cluster Analysis Clustering Cognition & reasoning Computer and Information Sciences Computer engineering Excitation Excitatory Postsynaptic Potentials Factor analysis Firing pattern Inhibitory Postsynaptic Potentials Macaca Medicine and Health Sciences Methods Models, Neurological Neurons Neurons - physiology Neurosciences Physical Sciences Physiological aspects Population Population (statistical) Population studies Research and Analysis Methods Statistical analysis Statistical tests Structure Structure-function relationships Visual cortex Visual Cortex - physiology Visual perception |
title | Population activity structure of excitatory and inhibitory neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20activity%20structure%20of%20excitatory%20and%20inhibitory%20neurons&rft.jtitle=PloS%20one&rft.au=Bittner,%20Sean%20R&rft.date=2017-08-17&rft.volume=12&rft.issue=8&rft.spage=e0181773&rft.pages=e0181773-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0181773&rft_dat=%3Cgale_plos_%3EA501760081%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1930441969&rft_id=info:pmid/28817581&rft_galeid=A501760081&rft_doaj_id=oai_doaj_org_article_6555ce60929b41a3bc84d448e7725786&rfr_iscdi=true |