Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium

In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2017-07, Vol.13 (7), p.e1005610-e1005610
Hauptverfasser: Wortman, Juliana C, Nahmad, Marcos, Zhang, Peng Cheng, Lander, Arthur D, Yu, Clare C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005610
container_issue 7
container_start_page e1005610
container_title PLoS computational biology
container_volume 13
creator Wortman, Juliana C
Nahmad, Marcos
Zhang, Peng Cheng
Lander, Arthur D
Yu, Clare C
description In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj.
doi_str_mv 10.1371/journal.pcbi.1005610
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1929412211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499694456</galeid><doaj_id>oai_doaj_org_article_f7bc4a28f3644286ba20181087f0cc10</doaj_id><sourcerecordid>A499694456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-78b6e6414f0aa030a0cd30eda167b779e0e254344869adbc188860df83af2f143</originalsourceid><addsrcrecordid>eNqVUk1v1DAUjBCIlsI_QBCJCxyy2LHjOBekqhRYqQKJj7P14thZrxw7tZO28Otx2G3VRVyQD36yZ-a9N5ose47RCpMav936OTiwq1G2ZoURqhhGD7JjXFWkqEnFH96rj7InMW4RSmXDHmdHJWc1big6zuT5zQiuM67Po-mTXqqKwVslZ6vya7hSOng35YPvlM29zqWyNh-9hWB-wWS8y43Lp43K3wcf_bgxFvLrRW4MZvChM_PwNHukwUb1bH-fZD8-nH8_-1RcfPm4Pju9KCQjZCpq3jLFKKYaASCCAMmOINUBZnVb141CqqwooZSzBrpWYs45Q53mBHSpMSUn2cud7mh9FHt_osBN2VBclhgnxHqH6DxsxTIhhJ_CgxF_HnzoBYTJSKuErltJoeSaMEqTXy2UCHOMeK2RlBglrXf7bnM7qE4qNwWwB6KHP85sRO-vRFXhijZVEni9Fwj-clZxEoOJi73glJ-XuXHFa0L5stmrv6D_3m61Q_WQFjBO-9RXptOpwUjvlDbp_ZQ2DWsorVgivDkgJMykbqYe5hjF-tvX_8B-PsTSHVamTMSg9J0rGIklvLfjiyW8Yh_eRHtx39E70m1ayW-XZewH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929412211</pqid></control><display><type>article</type><title>Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wortman, Juliana C ; Nahmad, Marcos ; Zhang, Peng Cheng ; Lander, Arthur D ; Yu, Clare C</creator><creatorcontrib>Wortman, Juliana C ; Nahmad, Marcos ; Zhang, Peng Cheng ; Lander, Arthur D ; Yu, Clare C</creatorcontrib><description>In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005610</identifier><identifier>PMID: 28671940</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animal wings ; Animals ; Asymmetry ; Binding ; Biology and Life Sciences ; Biomedical engineering ; Cadherins - metabolism ; Cell Adhesion Molecules - metabolism ; Cell division ; Cell growth ; Cell Polarity - physiology ; Cell proliferation ; Chemical bonds ; Computer applications ; Computer Simulation ; Concentration gradient ; Drosophila ; Drosophila - cytology ; Drosophila - physiology ; Drosophila Proteins - metabolism ; Gene expression ; Gene Expression Regulation, Developmental - physiology ; Golgi cells ; Insects ; Interfaces ; Kinases ; Localization ; Mathematical models ; Medical research ; Membrane Glycoproteins - metabolism ; Models, Biological ; Mutation ; Myosin ; Myosins - metabolism ; Observations ; Organogenesis - physiology ; Phosphorylation ; Physical Sciences ; Physics ; Physiological aspects ; Polarization ; Research and Analysis Methods ; Skewed distributions ; Spatial distribution ; Tissues ; Wings, Animal - cytology ; Wings, Animal - physiology</subject><ispartof>PLoS computational biology, 2017-07, Vol.13 (7), p.e1005610-e1005610</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: wing primordium. PLoS Comput Biol 13(7): e1005610. https://doi.org/10.1371/journal.pcbi.1005610</rights><rights>2017 Wortman et al 2017 Wortman et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: wing primordium. PLoS Comput Biol 13(7): e1005610. https://doi.org/10.1371/journal.pcbi.1005610</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-78b6e6414f0aa030a0cd30eda167b779e0e254344869adbc188860df83af2f143</citedby><cites>FETCH-LOGICAL-c633t-78b6e6414f0aa030a0cd30eda167b779e0e254344869adbc188860df83af2f143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515495/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515495/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28671940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wortman, Juliana C</creatorcontrib><creatorcontrib>Nahmad, Marcos</creatorcontrib><creatorcontrib>Zhang, Peng Cheng</creatorcontrib><creatorcontrib>Lander, Arthur D</creatorcontrib><creatorcontrib>Yu, Clare C</creatorcontrib><title>Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj.</description><subject>Animal wings</subject><subject>Animals</subject><subject>Asymmetry</subject><subject>Binding</subject><subject>Biology and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Cadherins - metabolism</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell division</subject><subject>Cell growth</subject><subject>Cell Polarity - physiology</subject><subject>Cell proliferation</subject><subject>Chemical bonds</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Concentration gradient</subject><subject>Drosophila</subject><subject>Drosophila - cytology</subject><subject>Drosophila - physiology</subject><subject>Drosophila Proteins - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Golgi cells</subject><subject>Insects</subject><subject>Interfaces</subject><subject>Kinases</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Myosin</subject><subject>Myosins - metabolism</subject><subject>Observations</subject><subject>Organogenesis - physiology</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Polarization</subject><subject>Research and Analysis Methods</subject><subject>Skewed distributions</subject><subject>Spatial distribution</subject><subject>Tissues</subject><subject>Wings, Animal - cytology</subject><subject>Wings, Animal - physiology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVUk1v1DAUjBCIlsI_QBCJCxyy2LHjOBekqhRYqQKJj7P14thZrxw7tZO28Otx2G3VRVyQD36yZ-a9N5ose47RCpMav936OTiwq1G2ZoURqhhGD7JjXFWkqEnFH96rj7InMW4RSmXDHmdHJWc1big6zuT5zQiuM67Po-mTXqqKwVslZ6vya7hSOng35YPvlM29zqWyNh-9hWB-wWS8y43Lp43K3wcf_bgxFvLrRW4MZvChM_PwNHukwUb1bH-fZD8-nH8_-1RcfPm4Pju9KCQjZCpq3jLFKKYaASCCAMmOINUBZnVb141CqqwooZSzBrpWYs45Q53mBHSpMSUn2cud7mh9FHt_osBN2VBclhgnxHqH6DxsxTIhhJ_CgxF_HnzoBYTJSKuErltJoeSaMEqTXy2UCHOMeK2RlBglrXf7bnM7qE4qNwWwB6KHP85sRO-vRFXhijZVEni9Fwj-clZxEoOJi73glJ-XuXHFa0L5stmrv6D_3m61Q_WQFjBO-9RXptOpwUjvlDbp_ZQ2DWsorVgivDkgJMykbqYe5hjF-tvX_8B-PsTSHVamTMSg9J0rGIklvLfjiyW8Yh_eRHtx39E70m1ayW-XZewH</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Wortman, Juliana C</creator><creator>Nahmad, Marcos</creator><creator>Zhang, Peng Cheng</creator><creator>Lander, Arthur D</creator><creator>Yu, Clare C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170701</creationdate><title>Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium</title><author>Wortman, Juliana C ; Nahmad, Marcos ; Zhang, Peng Cheng ; Lander, Arthur D ; Yu, Clare C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-78b6e6414f0aa030a0cd30eda167b779e0e254344869adbc188860df83af2f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animal wings</topic><topic>Animals</topic><topic>Asymmetry</topic><topic>Binding</topic><topic>Biology and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Cadherins - metabolism</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell division</topic><topic>Cell growth</topic><topic>Cell Polarity - physiology</topic><topic>Cell proliferation</topic><topic>Chemical bonds</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Concentration gradient</topic><topic>Drosophila</topic><topic>Drosophila - cytology</topic><topic>Drosophila - physiology</topic><topic>Drosophila Proteins - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Golgi cells</topic><topic>Insects</topic><topic>Interfaces</topic><topic>Kinases</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Myosin</topic><topic>Myosins - metabolism</topic><topic>Observations</topic><topic>Organogenesis - physiology</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Polarization</topic><topic>Research and Analysis Methods</topic><topic>Skewed distributions</topic><topic>Spatial distribution</topic><topic>Tissues</topic><topic>Wings, Animal - cytology</topic><topic>Wings, Animal - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wortman, Juliana C</creatorcontrib><creatorcontrib>Nahmad, Marcos</creatorcontrib><creatorcontrib>Zhang, Peng Cheng</creatorcontrib><creatorcontrib>Lander, Arthur D</creatorcontrib><creatorcontrib>Yu, Clare C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wortman, Juliana C</au><au>Nahmad, Marcos</au><au>Zhang, Peng Cheng</au><au>Lander, Arthur D</au><au>Yu, Clare C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>13</volume><issue>7</issue><spage>e1005610</spage><epage>e1005610</epage><pages>e1005610-e1005610</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28671940</pmid><doi>10.1371/journal.pcbi.1005610</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2017-07, Vol.13 (7), p.e1005610-e1005610
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1929412211
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animal wings
Animals
Asymmetry
Binding
Biology and Life Sciences
Biomedical engineering
Cadherins - metabolism
Cell Adhesion Molecules - metabolism
Cell division
Cell growth
Cell Polarity - physiology
Cell proliferation
Chemical bonds
Computer applications
Computer Simulation
Concentration gradient
Drosophila
Drosophila - cytology
Drosophila - physiology
Drosophila Proteins - metabolism
Gene expression
Gene Expression Regulation, Developmental - physiology
Golgi cells
Insects
Interfaces
Kinases
Localization
Mathematical models
Medical research
Membrane Glycoproteins - metabolism
Models, Biological
Mutation
Myosin
Myosins - metabolism
Observations
Organogenesis - physiology
Phosphorylation
Physical Sciences
Physics
Physiological aspects
Polarization
Research and Analysis Methods
Skewed distributions
Spatial distribution
Tissues
Wings, Animal - cytology
Wings, Animal - physiology
title Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expanding%20signaling-molecule%20wavefront%20model%20of%20cell%20polarization%20in%20the%20Drosophila%20wing%20primordium&rft.jtitle=PLoS%20computational%20biology&rft.au=Wortman,%20Juliana%20C&rft.date=2017-07-01&rft.volume=13&rft.issue=7&rft.spage=e1005610&rft.epage=e1005610&rft.pages=e1005610-e1005610&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005610&rft_dat=%3Cgale_plos_%3EA499694456%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929412211&rft_id=info:pmid/28671940&rft_galeid=A499694456&rft_doaj_id=oai_doaj_org_article_f7bc4a28f3644286ba20181087f0cc10&rfr_iscdi=true