Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis
Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2017-07, Vol.13 (7), p.e1006892-e1006892 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1006892 |
---|---|
container_issue | 7 |
container_start_page | e1006892 |
container_title | PLoS genetics |
container_volume | 13 |
creator | Xia, Zhidan Wei, Jiayu Li, Yingniang Wang, Jia Li, Wenwen Wang, Kai Hong, Xiaoli Zhao, Lu Chen, Caiyong Min, Junxia Wang, Fudi |
description | Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific treatments are available for this disorder. Here, we generated two zebrafish slc30a10 mutant lines using the CRISPR/Cas9 system. Compared to wild-type animals, mutant adult animals developed significantly higher systemic Mn levels, and Mn accumulated in the brain and liver of mutant embryos in response to exogenous Mn. Interestingly, slc30a10 mutants developed neurological deficits in adulthood, as well as environmental Mn-induced manganism in the embryonic stage; moreover, mutant animals had impaired dopaminergic and GABAergic signaling. Finally, mutant animals developed steatosis, liver fibrosis, and polycythemia accompanied by increased epo expression. This phenotype was rescued partially by EDTA- CaNa2 chelation therapy and iron supplementation. Interestingly, prior to the onset of slc30a10 expression, expressing ATP2C1 (ATPase secretory pathway Ca2+ transporting 1) protected mutant embryos from Mn exposure, suggesting a compensatory role for Atp2c1 in the absence of Slc30a10. Notably, expressing either wild-type or mutant forms of SLC30A10 was sufficient to inhibit the effect of ATP2C1 in response to Mn challenge in both zebrafish embryos and HeLa cells. These findings suggest that either activating ATP2C1 or restoring the Mn-induced trafficking of ATP2C1 can reduce Mn accumulation, providing a possible target for treating HMDPC. |
doi_str_mv | 10.1371/journal.pgen.1006892 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1929401636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499694437</galeid><doaj_id>oai_doaj_org_article_d5099e31e0184f9d81f104a9efa6e98b</doaj_id><sourcerecordid>A499694437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-2628151ec14ea34e257beb44b6de2608d1a0d1c9d6b6b2f635bc597c47e2b6b03</originalsourceid><addsrcrecordid>eNqVk9-L1DAQx4so3nn6H4gGBNGHXZM0TZsXYTn8sXB44K8HX0KaTtssbbI26eL-92bd3rGVe1BCyDD5zDfJTCZJnhK8JGlO3mzcOFjVLbcN2CXBmBeC3kvOSZali5xhdv_EPkseeb_BOM0KkT9MzmjBBeWsOE_CDygHVRvfIt_pFCuCUQW10Qas3qMBdqA6qJBC1u2gQ9r1W7BeBTfsUQ-6Vdb4HrkarcKWaoKMRb0yNsRpbBNt2ygLHlDrenA-KG_84-RBrToPT6b1Ivn2_t3Xy4-Lq-sP68vV1ULnlIcF5bQgGQFNGKiUAc3yEkrGSl4B5bioiMIV0aLiJS9pzdOs1JnINcuBRg9OL5LnR91t57ycEuYlEVQwTHjKI7E-EpVTG7kdTK-GvXTKyD8ONzRSDcHoDmSVYSEgJYBJwWpRFaQmmCkBteIgijJqvZ1OG8seKg02DKqbic53rGll43YyyyhjJIsCryaBwf0cwQfZG6-h62IC3Xi4N8kFZ7hII_riL_Tu101UE2soja1dPFcfROWKCcEFY2keqeUdVBwV9EY7G39D9M8CXs8CIhPgV2jU6L1cf_n8H-ynf2evv8_ZlydsGz9paL3rxmCc9XOQHUE9OO8HqG8LQrA8NNJN5uShkeTUSDHs2Wkxb4NuOif9DSS4GFY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929401636</pqid></control><display><type>article</type><title>Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Xia, Zhidan ; Wei, Jiayu ; Li, Yingniang ; Wang, Jia ; Li, Wenwen ; Wang, Kai ; Hong, Xiaoli ; Zhao, Lu ; Chen, Caiyong ; Min, Junxia ; Wang, Fudi</creator><contributor>Gitlin, Jonathan</contributor><creatorcontrib>Xia, Zhidan ; Wei, Jiayu ; Li, Yingniang ; Wang, Jia ; Li, Wenwen ; Wang, Kai ; Hong, Xiaoli ; Zhao, Lu ; Chen, Caiyong ; Min, Junxia ; Wang, Fudi ; Gitlin, Jonathan</creatorcontrib><description>Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific treatments are available for this disorder. Here, we generated two zebrafish slc30a10 mutant lines using the CRISPR/Cas9 system. Compared to wild-type animals, mutant adult animals developed significantly higher systemic Mn levels, and Mn accumulated in the brain and liver of mutant embryos in response to exogenous Mn. Interestingly, slc30a10 mutants developed neurological deficits in adulthood, as well as environmental Mn-induced manganism in the embryonic stage; moreover, mutant animals had impaired dopaminergic and GABAergic signaling. Finally, mutant animals developed steatosis, liver fibrosis, and polycythemia accompanied by increased epo expression. This phenotype was rescued partially by EDTA- CaNa2 chelation therapy and iron supplementation. Interestingly, prior to the onset of slc30a10 expression, expressing ATP2C1 (ATPase secretory pathway Ca2+ transporting 1) protected mutant embryos from Mn exposure, suggesting a compensatory role for Atp2c1 in the absence of Slc30a10. Notably, expressing either wild-type or mutant forms of SLC30A10 was sufficient to inhibit the effect of ATP2C1 in response to Mn challenge in both zebrafish embryos and HeLa cells. These findings suggest that either activating ATP2C1 or restoring the Mn-induced trafficking of ATP2C1 can reduce Mn accumulation, providing a possible target for treating HMDPC.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006892</identifier><identifier>PMID: 28692648</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine triphosphatase ; Animals ; Biology and Life Sciences ; Brain - metabolism ; Brain - pathology ; Calcium ; Calcium-Transporting ATPases - genetics ; Cation Transport Proteins - deficiency ; Cation Transport Proteins - genetics ; Chelation ; Children & youth ; Cirrhosis ; Collaboration ; CRISPR ; CRISPR-Cas Systems ; Dopamine ; Dopamine receptors ; Dystonia ; Embryos ; Ethylenediaminetetraacetic acids ; Fatty liver ; Fibrosis ; Food safety ; Funding ; Genotype ; HeLa Cells ; Homeostasis ; Homeostasis - genetics ; Hospitals ; Humans ; Infectious diseases ; Iron ; Life sciences ; Liver ; Liver cirrhosis ; Manganese ; Manganese (Nutrient) ; Manganese - metabolism ; Medical diagnosis ; Medicine ; Medicine and Health Sciences ; Metabolic Diseases - genetics ; Metabolic Diseases - metabolism ; Metabolic Diseases - pathology ; Metabolism ; Mutation ; Neurological diseases ; Neurotoxicity ; Nutrition ; Observations ; Physical Sciences ; Physiological aspects ; Polycythemia ; Public health ; Research and Analysis Methods ; Roles ; Software ; Steatosis ; Studies ; Supplements ; Zebrafish ; Zebrafish - genetics ; Zinc Transporter 8 ; γ-Aminobutyric acid</subject><ispartof>PLoS genetics, 2017-07, Vol.13 (7), p.e1006892-e1006892</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis. PLoS Genet 13(7): e1006892. https://doi.org/10.1371/journal.pgen.1006892</rights><rights>2017 Xia et al 2017 Xia et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis. PLoS Genet 13(7): e1006892. https://doi.org/10.1371/journal.pgen.1006892</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-2628151ec14ea34e257beb44b6de2608d1a0d1c9d6b6b2f635bc597c47e2b6b03</citedby><cites>FETCH-LOGICAL-c726t-2628151ec14ea34e257beb44b6de2608d1a0d1c9d6b6b2f635bc597c47e2b6b03</cites><orcidid>0000-0001-8730-0003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524415/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524415/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28692648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gitlin, Jonathan</contributor><creatorcontrib>Xia, Zhidan</creatorcontrib><creatorcontrib>Wei, Jiayu</creatorcontrib><creatorcontrib>Li, Yingniang</creatorcontrib><creatorcontrib>Wang, Jia</creatorcontrib><creatorcontrib>Li, Wenwen</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Hong, Xiaoli</creatorcontrib><creatorcontrib>Zhao, Lu</creatorcontrib><creatorcontrib>Chen, Caiyong</creatorcontrib><creatorcontrib>Min, Junxia</creatorcontrib><creatorcontrib>Wang, Fudi</creatorcontrib><title>Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific treatments are available for this disorder. Here, we generated two zebrafish slc30a10 mutant lines using the CRISPR/Cas9 system. Compared to wild-type animals, mutant adult animals developed significantly higher systemic Mn levels, and Mn accumulated in the brain and liver of mutant embryos in response to exogenous Mn. Interestingly, slc30a10 mutants developed neurological deficits in adulthood, as well as environmental Mn-induced manganism in the embryonic stage; moreover, mutant animals had impaired dopaminergic and GABAergic signaling. Finally, mutant animals developed steatosis, liver fibrosis, and polycythemia accompanied by increased epo expression. This phenotype was rescued partially by EDTA- CaNa2 chelation therapy and iron supplementation. Interestingly, prior to the onset of slc30a10 expression, expressing ATP2C1 (ATPase secretory pathway Ca2+ transporting 1) protected mutant embryos from Mn exposure, suggesting a compensatory role for Atp2c1 in the absence of Slc30a10. Notably, expressing either wild-type or mutant forms of SLC30A10 was sufficient to inhibit the effect of ATP2C1 in response to Mn challenge in both zebrafish embryos and HeLa cells. These findings suggest that either activating ATP2C1 or restoring the Mn-induced trafficking of ATP2C1 can reduce Mn accumulation, providing a possible target for treating HMDPC.</description><subject>Adenosine triphosphatase</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Calcium</subject><subject>Calcium-Transporting ATPases - genetics</subject><subject>Cation Transport Proteins - deficiency</subject><subject>Cation Transport Proteins - genetics</subject><subject>Chelation</subject><subject>Children & youth</subject><subject>Cirrhosis</subject><subject>Collaboration</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Dopamine</subject><subject>Dopamine receptors</subject><subject>Dystonia</subject><subject>Embryos</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Fatty liver</subject><subject>Fibrosis</subject><subject>Food safety</subject><subject>Funding</subject><subject>Genotype</subject><subject>HeLa Cells</subject><subject>Homeostasis</subject><subject>Homeostasis - genetics</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Iron</subject><subject>Life sciences</subject><subject>Liver</subject><subject>Liver cirrhosis</subject><subject>Manganese</subject><subject>Manganese (Nutrient)</subject><subject>Manganese - metabolism</subject><subject>Medical diagnosis</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic Diseases - genetics</subject><subject>Metabolic Diseases - metabolism</subject><subject>Metabolic Diseases - pathology</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Neurological diseases</subject><subject>Neurotoxicity</subject><subject>Nutrition</subject><subject>Observations</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Polycythemia</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Roles</subject><subject>Software</subject><subject>Steatosis</subject><subject>Studies</subject><subject>Supplements</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><subject>Zinc Transporter 8</subject><subject>γ-Aminobutyric acid</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9-L1DAQx4so3nn6H4gGBNGHXZM0TZsXYTn8sXB44K8HX0KaTtssbbI26eL-92bd3rGVe1BCyDD5zDfJTCZJnhK8JGlO3mzcOFjVLbcN2CXBmBeC3kvOSZali5xhdv_EPkseeb_BOM0KkT9MzmjBBeWsOE_CDygHVRvfIt_pFCuCUQW10Qas3qMBdqA6qJBC1u2gQ9r1W7BeBTfsUQ-6Vdb4HrkarcKWaoKMRb0yNsRpbBNt2ygLHlDrenA-KG_84-RBrToPT6b1Ivn2_t3Xy4-Lq-sP68vV1ULnlIcF5bQgGQFNGKiUAc3yEkrGSl4B5bioiMIV0aLiJS9pzdOs1JnINcuBRg9OL5LnR91t57ycEuYlEVQwTHjKI7E-EpVTG7kdTK-GvXTKyD8ONzRSDcHoDmSVYSEgJYBJwWpRFaQmmCkBteIgijJqvZ1OG8seKg02DKqbic53rGll43YyyyhjJIsCryaBwf0cwQfZG6-h62IC3Xi4N8kFZ7hII_riL_Tu101UE2soja1dPFcfROWKCcEFY2keqeUdVBwV9EY7G39D9M8CXs8CIhPgV2jU6L1cf_n8H-ynf2evv8_ZlydsGz9paL3rxmCc9XOQHUE9OO8HqG8LQrA8NNJN5uShkeTUSDHs2Wkxb4NuOif9DSS4GFY</recordid><startdate>20170710</startdate><enddate>20170710</enddate><creator>Xia, Zhidan</creator><creator>Wei, Jiayu</creator><creator>Li, Yingniang</creator><creator>Wang, Jia</creator><creator>Li, Wenwen</creator><creator>Wang, Kai</creator><creator>Hong, Xiaoli</creator><creator>Zhao, Lu</creator><creator>Chen, Caiyong</creator><creator>Min, Junxia</creator><creator>Wang, Fudi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8730-0003</orcidid></search><sort><creationdate>20170710</creationdate><title>Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis</title><author>Xia, Zhidan ; Wei, Jiayu ; Li, Yingniang ; Wang, Jia ; Li, Wenwen ; Wang, Kai ; Hong, Xiaoli ; Zhao, Lu ; Chen, Caiyong ; Min, Junxia ; Wang, Fudi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-2628151ec14ea34e257beb44b6de2608d1a0d1c9d6b6b2f635bc597c47e2b6b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine triphosphatase</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Calcium</topic><topic>Calcium-Transporting ATPases - genetics</topic><topic>Cation Transport Proteins - deficiency</topic><topic>Cation Transport Proteins - genetics</topic><topic>Chelation</topic><topic>Children & youth</topic><topic>Cirrhosis</topic><topic>Collaboration</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Dopamine</topic><topic>Dopamine receptors</topic><topic>Dystonia</topic><topic>Embryos</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Fatty liver</topic><topic>Fibrosis</topic><topic>Food safety</topic><topic>Funding</topic><topic>Genotype</topic><topic>HeLa Cells</topic><topic>Homeostasis</topic><topic>Homeostasis - genetics</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Iron</topic><topic>Life sciences</topic><topic>Liver</topic><topic>Liver cirrhosis</topic><topic>Manganese</topic><topic>Manganese (Nutrient)</topic><topic>Manganese - metabolism</topic><topic>Medical diagnosis</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic Diseases - genetics</topic><topic>Metabolic Diseases - metabolism</topic><topic>Metabolic Diseases - pathology</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Neurological diseases</topic><topic>Neurotoxicity</topic><topic>Nutrition</topic><topic>Observations</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Polycythemia</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Roles</topic><topic>Software</topic><topic>Steatosis</topic><topic>Studies</topic><topic>Supplements</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><topic>Zinc Transporter 8</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Zhidan</creatorcontrib><creatorcontrib>Wei, Jiayu</creatorcontrib><creatorcontrib>Li, Yingniang</creatorcontrib><creatorcontrib>Wang, Jia</creatorcontrib><creatorcontrib>Li, Wenwen</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Hong, Xiaoli</creatorcontrib><creatorcontrib>Zhao, Lu</creatorcontrib><creatorcontrib>Chen, Caiyong</creatorcontrib><creatorcontrib>Min, Junxia</creatorcontrib><creatorcontrib>Wang, Fudi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Zhidan</au><au>Wei, Jiayu</au><au>Li, Yingniang</au><au>Wang, Jia</au><au>Li, Wenwen</au><au>Wang, Kai</au><au>Hong, Xiaoli</au><au>Zhao, Lu</au><au>Chen, Caiyong</au><au>Min, Junxia</au><au>Wang, Fudi</au><au>Gitlin, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2017-07-10</date><risdate>2017</risdate><volume>13</volume><issue>7</issue><spage>e1006892</spage><epage>e1006892</epage><pages>e1006892-e1006892</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific treatments are available for this disorder. Here, we generated two zebrafish slc30a10 mutant lines using the CRISPR/Cas9 system. Compared to wild-type animals, mutant adult animals developed significantly higher systemic Mn levels, and Mn accumulated in the brain and liver of mutant embryos in response to exogenous Mn. Interestingly, slc30a10 mutants developed neurological deficits in adulthood, as well as environmental Mn-induced manganism in the embryonic stage; moreover, mutant animals had impaired dopaminergic and GABAergic signaling. Finally, mutant animals developed steatosis, liver fibrosis, and polycythemia accompanied by increased epo expression. This phenotype was rescued partially by EDTA- CaNa2 chelation therapy and iron supplementation. Interestingly, prior to the onset of slc30a10 expression, expressing ATP2C1 (ATPase secretory pathway Ca2+ transporting 1) protected mutant embryos from Mn exposure, suggesting a compensatory role for Atp2c1 in the absence of Slc30a10. Notably, expressing either wild-type or mutant forms of SLC30A10 was sufficient to inhibit the effect of ATP2C1 in response to Mn challenge in both zebrafish embryos and HeLa cells. These findings suggest that either activating ATP2C1 or restoring the Mn-induced trafficking of ATP2C1 can reduce Mn accumulation, providing a possible target for treating HMDPC.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28692648</pmid><doi>10.1371/journal.pgen.1006892</doi><orcidid>https://orcid.org/0000-0001-8730-0003</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2017-07, Vol.13 (7), p.e1006892-e1006892 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1929401636 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Adenosine triphosphatase Animals Biology and Life Sciences Brain - metabolism Brain - pathology Calcium Calcium-Transporting ATPases - genetics Cation Transport Proteins - deficiency Cation Transport Proteins - genetics Chelation Children & youth Cirrhosis Collaboration CRISPR CRISPR-Cas Systems Dopamine Dopamine receptors Dystonia Embryos Ethylenediaminetetraacetic acids Fatty liver Fibrosis Food safety Funding Genotype HeLa Cells Homeostasis Homeostasis - genetics Hospitals Humans Infectious diseases Iron Life sciences Liver Liver cirrhosis Manganese Manganese (Nutrient) Manganese - metabolism Medical diagnosis Medicine Medicine and Health Sciences Metabolic Diseases - genetics Metabolic Diseases - metabolism Metabolic Diseases - pathology Metabolism Mutation Neurological diseases Neurotoxicity Nutrition Observations Physical Sciences Physiological aspects Polycythemia Public health Research and Analysis Methods Roles Software Steatosis Studies Supplements Zebrafish Zebrafish - genetics Zinc Transporter 8 γ-Aminobutyric acid |
title | Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zebrafish%20slc30a10%20deficiency%20revealed%20a%20novel%20compensatory%20mechanism%20of%20Atp2c1%20in%20maintaining%20manganese%20homeostasis&rft.jtitle=PLoS%20genetics&rft.au=Xia,%20Zhidan&rft.date=2017-07-10&rft.volume=13&rft.issue=7&rft.spage=e1006892&rft.epage=e1006892&rft.pages=e1006892-e1006892&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006892&rft_dat=%3Cgale_plos_%3EA499694437%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929401636&rft_id=info:pmid/28692648&rft_galeid=A499694437&rft_doaj_id=oai_doaj_org_article_d5099e31e0184f9d81f104a9efa6e98b&rfr_iscdi=true |