Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis

Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2017-07, Vol.13 (7), p.e1006892-e1006892
Hauptverfasser: Xia, Zhidan, Wei, Jiayu, Li, Yingniang, Wang, Jia, Li, Wenwen, Wang, Kai, Hong, Xiaoli, Zhao, Lu, Chen, Caiyong, Min, Junxia, Wang, Fudi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006892
container_issue 7
container_start_page e1006892
container_title PLoS genetics
container_volume 13
creator Xia, Zhidan
Wei, Jiayu
Li, Yingniang
Wang, Jia
Li, Wenwen
Wang, Kai
Hong, Xiaoli
Zhao, Lu
Chen, Caiyong
Min, Junxia
Wang, Fudi
description Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific treatments are available for this disorder. Here, we generated two zebrafish slc30a10 mutant lines using the CRISPR/Cas9 system. Compared to wild-type animals, mutant adult animals developed significantly higher systemic Mn levels, and Mn accumulated in the brain and liver of mutant embryos in response to exogenous Mn. Interestingly, slc30a10 mutants developed neurological deficits in adulthood, as well as environmental Mn-induced manganism in the embryonic stage; moreover, mutant animals had impaired dopaminergic and GABAergic signaling. Finally, mutant animals developed steatosis, liver fibrosis, and polycythemia accompanied by increased epo expression. This phenotype was rescued partially by EDTA- CaNa2 chelation therapy and iron supplementation. Interestingly, prior to the onset of slc30a10 expression, expressing ATP2C1 (ATPase secretory pathway Ca2+ transporting 1) protected mutant embryos from Mn exposure, suggesting a compensatory role for Atp2c1 in the absence of Slc30a10. Notably, expressing either wild-type or mutant forms of SLC30A10 was sufficient to inhibit the effect of ATP2C1 in response to Mn challenge in both zebrafish embryos and HeLa cells. These findings suggest that either activating ATP2C1 or restoring the Mn-induced trafficking of ATP2C1 can reduce Mn accumulation, providing a possible target for treating HMDPC.
doi_str_mv 10.1371/journal.pgen.1006892
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1929401636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499694437</galeid><doaj_id>oai_doaj_org_article_d5099e31e0184f9d81f104a9efa6e98b</doaj_id><sourcerecordid>A499694437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-2628151ec14ea34e257beb44b6de2608d1a0d1c9d6b6b2f635bc597c47e2b6b03</originalsourceid><addsrcrecordid>eNqVk9-L1DAQx4so3nn6H4gGBNGHXZM0TZsXYTn8sXB44K8HX0KaTtssbbI26eL-92bd3rGVe1BCyDD5zDfJTCZJnhK8JGlO3mzcOFjVLbcN2CXBmBeC3kvOSZali5xhdv_EPkseeb_BOM0KkT9MzmjBBeWsOE_CDygHVRvfIt_pFCuCUQW10Qas3qMBdqA6qJBC1u2gQ9r1W7BeBTfsUQ-6Vdb4HrkarcKWaoKMRb0yNsRpbBNt2ygLHlDrenA-KG_84-RBrToPT6b1Ivn2_t3Xy4-Lq-sP68vV1ULnlIcF5bQgGQFNGKiUAc3yEkrGSl4B5bioiMIV0aLiJS9pzdOs1JnINcuBRg9OL5LnR91t57ycEuYlEVQwTHjKI7E-EpVTG7kdTK-GvXTKyD8ONzRSDcHoDmSVYSEgJYBJwWpRFaQmmCkBteIgijJqvZ1OG8seKg02DKqbic53rGll43YyyyhjJIsCryaBwf0cwQfZG6-h62IC3Xi4N8kFZ7hII_riL_Tu101UE2soja1dPFcfROWKCcEFY2keqeUdVBwV9EY7G39D9M8CXs8CIhPgV2jU6L1cf_n8H-ynf2evv8_ZlydsGz9paL3rxmCc9XOQHUE9OO8HqG8LQrA8NNJN5uShkeTUSDHs2Wkxb4NuOif9DSS4GFY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929401636</pqid></control><display><type>article</type><title>Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Xia, Zhidan ; Wei, Jiayu ; Li, Yingniang ; Wang, Jia ; Li, Wenwen ; Wang, Kai ; Hong, Xiaoli ; Zhao, Lu ; Chen, Caiyong ; Min, Junxia ; Wang, Fudi</creator><contributor>Gitlin, Jonathan</contributor><creatorcontrib>Xia, Zhidan ; Wei, Jiayu ; Li, Yingniang ; Wang, Jia ; Li, Wenwen ; Wang, Kai ; Hong, Xiaoli ; Zhao, Lu ; Chen, Caiyong ; Min, Junxia ; Wang, Fudi ; Gitlin, Jonathan</creatorcontrib><description>Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific treatments are available for this disorder. Here, we generated two zebrafish slc30a10 mutant lines using the CRISPR/Cas9 system. Compared to wild-type animals, mutant adult animals developed significantly higher systemic Mn levels, and Mn accumulated in the brain and liver of mutant embryos in response to exogenous Mn. Interestingly, slc30a10 mutants developed neurological deficits in adulthood, as well as environmental Mn-induced manganism in the embryonic stage; moreover, mutant animals had impaired dopaminergic and GABAergic signaling. Finally, mutant animals developed steatosis, liver fibrosis, and polycythemia accompanied by increased epo expression. This phenotype was rescued partially by EDTA- CaNa2 chelation therapy and iron supplementation. Interestingly, prior to the onset of slc30a10 expression, expressing ATP2C1 (ATPase secretory pathway Ca2+ transporting 1) protected mutant embryos from Mn exposure, suggesting a compensatory role for Atp2c1 in the absence of Slc30a10. Notably, expressing either wild-type or mutant forms of SLC30A10 was sufficient to inhibit the effect of ATP2C1 in response to Mn challenge in both zebrafish embryos and HeLa cells. These findings suggest that either activating ATP2C1 or restoring the Mn-induced trafficking of ATP2C1 can reduce Mn accumulation, providing a possible target for treating HMDPC.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1006892</identifier><identifier>PMID: 28692648</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine triphosphatase ; Animals ; Biology and Life Sciences ; Brain - metabolism ; Brain - pathology ; Calcium ; Calcium-Transporting ATPases - genetics ; Cation Transport Proteins - deficiency ; Cation Transport Proteins - genetics ; Chelation ; Children &amp; youth ; Cirrhosis ; Collaboration ; CRISPR ; CRISPR-Cas Systems ; Dopamine ; Dopamine receptors ; Dystonia ; Embryos ; Ethylenediaminetetraacetic acids ; Fatty liver ; Fibrosis ; Food safety ; Funding ; Genotype ; HeLa Cells ; Homeostasis ; Homeostasis - genetics ; Hospitals ; Humans ; Infectious diseases ; Iron ; Life sciences ; Liver ; Liver cirrhosis ; Manganese ; Manganese (Nutrient) ; Manganese - metabolism ; Medical diagnosis ; Medicine ; Medicine and Health Sciences ; Metabolic Diseases - genetics ; Metabolic Diseases - metabolism ; Metabolic Diseases - pathology ; Metabolism ; Mutation ; Neurological diseases ; Neurotoxicity ; Nutrition ; Observations ; Physical Sciences ; Physiological aspects ; Polycythemia ; Public health ; Research and Analysis Methods ; Roles ; Software ; Steatosis ; Studies ; Supplements ; Zebrafish ; Zebrafish - genetics ; Zinc Transporter 8 ; γ-Aminobutyric acid</subject><ispartof>PLoS genetics, 2017-07, Vol.13 (7), p.e1006892-e1006892</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis. PLoS Genet 13(7): e1006892. https://doi.org/10.1371/journal.pgen.1006892</rights><rights>2017 Xia et al 2017 Xia et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis. PLoS Genet 13(7): e1006892. https://doi.org/10.1371/journal.pgen.1006892</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-2628151ec14ea34e257beb44b6de2608d1a0d1c9d6b6b2f635bc597c47e2b6b03</citedby><cites>FETCH-LOGICAL-c726t-2628151ec14ea34e257beb44b6de2608d1a0d1c9d6b6b2f635bc597c47e2b6b03</cites><orcidid>0000-0001-8730-0003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524415/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5524415/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28692648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gitlin, Jonathan</contributor><creatorcontrib>Xia, Zhidan</creatorcontrib><creatorcontrib>Wei, Jiayu</creatorcontrib><creatorcontrib>Li, Yingniang</creatorcontrib><creatorcontrib>Wang, Jia</creatorcontrib><creatorcontrib>Li, Wenwen</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Hong, Xiaoli</creatorcontrib><creatorcontrib>Zhao, Lu</creatorcontrib><creatorcontrib>Chen, Caiyong</creatorcontrib><creatorcontrib>Min, Junxia</creatorcontrib><creatorcontrib>Wang, Fudi</creatorcontrib><title>Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific treatments are available for this disorder. Here, we generated two zebrafish slc30a10 mutant lines using the CRISPR/Cas9 system. Compared to wild-type animals, mutant adult animals developed significantly higher systemic Mn levels, and Mn accumulated in the brain and liver of mutant embryos in response to exogenous Mn. Interestingly, slc30a10 mutants developed neurological deficits in adulthood, as well as environmental Mn-induced manganism in the embryonic stage; moreover, mutant animals had impaired dopaminergic and GABAergic signaling. Finally, mutant animals developed steatosis, liver fibrosis, and polycythemia accompanied by increased epo expression. This phenotype was rescued partially by EDTA- CaNa2 chelation therapy and iron supplementation. Interestingly, prior to the onset of slc30a10 expression, expressing ATP2C1 (ATPase secretory pathway Ca2+ transporting 1) protected mutant embryos from Mn exposure, suggesting a compensatory role for Atp2c1 in the absence of Slc30a10. Notably, expressing either wild-type or mutant forms of SLC30A10 was sufficient to inhibit the effect of ATP2C1 in response to Mn challenge in both zebrafish embryos and HeLa cells. These findings suggest that either activating ATP2C1 or restoring the Mn-induced trafficking of ATP2C1 can reduce Mn accumulation, providing a possible target for treating HMDPC.</description><subject>Adenosine triphosphatase</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Calcium</subject><subject>Calcium-Transporting ATPases - genetics</subject><subject>Cation Transport Proteins - deficiency</subject><subject>Cation Transport Proteins - genetics</subject><subject>Chelation</subject><subject>Children &amp; youth</subject><subject>Cirrhosis</subject><subject>Collaboration</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Dopamine</subject><subject>Dopamine receptors</subject><subject>Dystonia</subject><subject>Embryos</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Fatty liver</subject><subject>Fibrosis</subject><subject>Food safety</subject><subject>Funding</subject><subject>Genotype</subject><subject>HeLa Cells</subject><subject>Homeostasis</subject><subject>Homeostasis - genetics</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Iron</subject><subject>Life sciences</subject><subject>Liver</subject><subject>Liver cirrhosis</subject><subject>Manganese</subject><subject>Manganese (Nutrient)</subject><subject>Manganese - metabolism</subject><subject>Medical diagnosis</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metabolic Diseases - genetics</subject><subject>Metabolic Diseases - metabolism</subject><subject>Metabolic Diseases - pathology</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Neurological diseases</subject><subject>Neurotoxicity</subject><subject>Nutrition</subject><subject>Observations</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Polycythemia</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Roles</subject><subject>Software</subject><subject>Steatosis</subject><subject>Studies</subject><subject>Supplements</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><subject>Zinc Transporter 8</subject><subject>γ-Aminobutyric acid</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9-L1DAQx4so3nn6H4gGBNGHXZM0TZsXYTn8sXB44K8HX0KaTtssbbI26eL-92bd3rGVe1BCyDD5zDfJTCZJnhK8JGlO3mzcOFjVLbcN2CXBmBeC3kvOSZali5xhdv_EPkseeb_BOM0KkT9MzmjBBeWsOE_CDygHVRvfIt_pFCuCUQW10Qas3qMBdqA6qJBC1u2gQ9r1W7BeBTfsUQ-6Vdb4HrkarcKWaoKMRb0yNsRpbBNt2ygLHlDrenA-KG_84-RBrToPT6b1Ivn2_t3Xy4-Lq-sP68vV1ULnlIcF5bQgGQFNGKiUAc3yEkrGSl4B5bioiMIV0aLiJS9pzdOs1JnINcuBRg9OL5LnR91t57ycEuYlEVQwTHjKI7E-EpVTG7kdTK-GvXTKyD8ONzRSDcHoDmSVYSEgJYBJwWpRFaQmmCkBteIgijJqvZ1OG8seKg02DKqbic53rGll43YyyyhjJIsCryaBwf0cwQfZG6-h62IC3Xi4N8kFZ7hII_riL_Tu101UE2soja1dPFcfROWKCcEFY2keqeUdVBwV9EY7G39D9M8CXs8CIhPgV2jU6L1cf_n8H-ynf2evv8_ZlydsGz9paL3rxmCc9XOQHUE9OO8HqG8LQrA8NNJN5uShkeTUSDHs2Wkxb4NuOif9DSS4GFY</recordid><startdate>20170710</startdate><enddate>20170710</enddate><creator>Xia, Zhidan</creator><creator>Wei, Jiayu</creator><creator>Li, Yingniang</creator><creator>Wang, Jia</creator><creator>Li, Wenwen</creator><creator>Wang, Kai</creator><creator>Hong, Xiaoli</creator><creator>Zhao, Lu</creator><creator>Chen, Caiyong</creator><creator>Min, Junxia</creator><creator>Wang, Fudi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8730-0003</orcidid></search><sort><creationdate>20170710</creationdate><title>Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis</title><author>Xia, Zhidan ; Wei, Jiayu ; Li, Yingniang ; Wang, Jia ; Li, Wenwen ; Wang, Kai ; Hong, Xiaoli ; Zhao, Lu ; Chen, Caiyong ; Min, Junxia ; Wang, Fudi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-2628151ec14ea34e257beb44b6de2608d1a0d1c9d6b6b2f635bc597c47e2b6b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine triphosphatase</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Calcium</topic><topic>Calcium-Transporting ATPases - genetics</topic><topic>Cation Transport Proteins - deficiency</topic><topic>Cation Transport Proteins - genetics</topic><topic>Chelation</topic><topic>Children &amp; youth</topic><topic>Cirrhosis</topic><topic>Collaboration</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Dopamine</topic><topic>Dopamine receptors</topic><topic>Dystonia</topic><topic>Embryos</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Fatty liver</topic><topic>Fibrosis</topic><topic>Food safety</topic><topic>Funding</topic><topic>Genotype</topic><topic>HeLa Cells</topic><topic>Homeostasis</topic><topic>Homeostasis - genetics</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Iron</topic><topic>Life sciences</topic><topic>Liver</topic><topic>Liver cirrhosis</topic><topic>Manganese</topic><topic>Manganese (Nutrient)</topic><topic>Manganese - metabolism</topic><topic>Medical diagnosis</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metabolic Diseases - genetics</topic><topic>Metabolic Diseases - metabolism</topic><topic>Metabolic Diseases - pathology</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Neurological diseases</topic><topic>Neurotoxicity</topic><topic>Nutrition</topic><topic>Observations</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Polycythemia</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Roles</topic><topic>Software</topic><topic>Steatosis</topic><topic>Studies</topic><topic>Supplements</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><topic>Zinc Transporter 8</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Zhidan</creatorcontrib><creatorcontrib>Wei, Jiayu</creatorcontrib><creatorcontrib>Li, Yingniang</creatorcontrib><creatorcontrib>Wang, Jia</creatorcontrib><creatorcontrib>Li, Wenwen</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Hong, Xiaoli</creatorcontrib><creatorcontrib>Zhao, Lu</creatorcontrib><creatorcontrib>Chen, Caiyong</creatorcontrib><creatorcontrib>Min, Junxia</creatorcontrib><creatorcontrib>Wang, Fudi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Zhidan</au><au>Wei, Jiayu</au><au>Li, Yingniang</au><au>Wang, Jia</au><au>Li, Wenwen</au><au>Wang, Kai</au><au>Hong, Xiaoli</au><au>Zhao, Lu</au><au>Chen, Caiyong</au><au>Min, Junxia</au><au>Wang, Fudi</au><au>Gitlin, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2017-07-10</date><risdate>2017</risdate><volume>13</volume><issue>7</issue><spage>e1006892</spage><epage>e1006892</epage><pages>e1006892-e1006892</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific treatments are available for this disorder. Here, we generated two zebrafish slc30a10 mutant lines using the CRISPR/Cas9 system. Compared to wild-type animals, mutant adult animals developed significantly higher systemic Mn levels, and Mn accumulated in the brain and liver of mutant embryos in response to exogenous Mn. Interestingly, slc30a10 mutants developed neurological deficits in adulthood, as well as environmental Mn-induced manganism in the embryonic stage; moreover, mutant animals had impaired dopaminergic and GABAergic signaling. Finally, mutant animals developed steatosis, liver fibrosis, and polycythemia accompanied by increased epo expression. This phenotype was rescued partially by EDTA- CaNa2 chelation therapy and iron supplementation. Interestingly, prior to the onset of slc30a10 expression, expressing ATP2C1 (ATPase secretory pathway Ca2+ transporting 1) protected mutant embryos from Mn exposure, suggesting a compensatory role for Atp2c1 in the absence of Slc30a10. Notably, expressing either wild-type or mutant forms of SLC30A10 was sufficient to inhibit the effect of ATP2C1 in response to Mn challenge in both zebrafish embryos and HeLa cells. These findings suggest that either activating ATP2C1 or restoring the Mn-induced trafficking of ATP2C1 can reduce Mn accumulation, providing a possible target for treating HMDPC.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28692648</pmid><doi>10.1371/journal.pgen.1006892</doi><orcidid>https://orcid.org/0000-0001-8730-0003</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2017-07, Vol.13 (7), p.e1006892-e1006892
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1929401636
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Adenosine triphosphatase
Animals
Biology and Life Sciences
Brain - metabolism
Brain - pathology
Calcium
Calcium-Transporting ATPases - genetics
Cation Transport Proteins - deficiency
Cation Transport Proteins - genetics
Chelation
Children & youth
Cirrhosis
Collaboration
CRISPR
CRISPR-Cas Systems
Dopamine
Dopamine receptors
Dystonia
Embryos
Ethylenediaminetetraacetic acids
Fatty liver
Fibrosis
Food safety
Funding
Genotype
HeLa Cells
Homeostasis
Homeostasis - genetics
Hospitals
Humans
Infectious diseases
Iron
Life sciences
Liver
Liver cirrhosis
Manganese
Manganese (Nutrient)
Manganese - metabolism
Medical diagnosis
Medicine
Medicine and Health Sciences
Metabolic Diseases - genetics
Metabolic Diseases - metabolism
Metabolic Diseases - pathology
Metabolism
Mutation
Neurological diseases
Neurotoxicity
Nutrition
Observations
Physical Sciences
Physiological aspects
Polycythemia
Public health
Research and Analysis Methods
Roles
Software
Steatosis
Studies
Supplements
Zebrafish
Zebrafish - genetics
Zinc Transporter 8
γ-Aminobutyric acid
title Zebrafish slc30a10 deficiency revealed a novel compensatory mechanism of Atp2c1 in maintaining manganese homeostasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zebrafish%20slc30a10%20deficiency%20revealed%20a%20novel%20compensatory%20mechanism%20of%20Atp2c1%20in%20maintaining%20manganese%20homeostasis&rft.jtitle=PLoS%20genetics&rft.au=Xia,%20Zhidan&rft.date=2017-07-10&rft.volume=13&rft.issue=7&rft.spage=e1006892&rft.epage=e1006892&rft.pages=e1006892-e1006892&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1006892&rft_dat=%3Cgale_plos_%3EA499694437%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929401636&rft_id=info:pmid/28692648&rft_galeid=A499694437&rft_doaj_id=oai_doaj_org_article_d5099e31e0184f9d81f104a9efa6e98b&rfr_iscdi=true