Heritability Estimation using a Regularized Regression Approach (HERRA): Applicable to continuous, dichotomous or age-at-onset outcome
The popular Genome-wide Complex Trait Analysis (GCTA) software uses the random-effects models for estimating the narrow-sense heritability based on GWAS data of unrelated individuals without knowing and identifying the causal loci. Many methods have since extended this approach to various situations...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-08, Vol.12 (8), p.e0181269-e0181269 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0181269 |
---|---|
container_issue | 8 |
container_start_page | e0181269 |
container_title | PloS one |
container_volume | 12 |
creator | Gorfine, Malka Berndt, Sonja I Chang-Claude, Jenny Hoffmeister, Michael Le Marchand, Loic Potter, John Slattery, Martha L Keret, Nir Peters, Ulrike Hsu, Li |
description | The popular Genome-wide Complex Trait Analysis (GCTA) software uses the random-effects models for estimating the narrow-sense heritability based on GWAS data of unrelated individuals without knowing and identifying the causal loci. Many methods have since extended this approach to various situations. However, since the proportion of causal loci among the variants is typically very small and GCTA uses all variants to calculate the similarities among individuals, the estimation of heritability may be unstable, resulting in a large variance of the estimates. Moreover, if the causal SNPs are not genotyped, GCTA sometimes greatly underestimates the true heritability. We present a novel narrow-sense heritability estimator, named HERRA, using well-developed ultra-high dimensional machine-learning methods, applicable to continuous or dichotomous outcomes, as other existing methods. Additionally, HERRA is applicable to time-to-event or age-at-onset outcome, which, to our knowledge, no existing method can handle. Compared to GCTA and LDAK for continuous and binary outcomes, HERRA often has a smaller variance, and when causal SNPs are not genotyped, HERRA has a much smaller empirical bias. We applied GCTA, LDAK and HERRA to a large colorectal cancer dataset using dichotomous outcome (4,312 cases, 4,356 controls, genotyped using Illumina 300K), the respective heritability estimates of GCTA, LDAK and HERRA are 0.068 (SE = 0.017), 0.072 (SE = 0.021) and 0.110 (SE = 5.19 x 10-3). HERRA yields over 50% increase in heritability estimate compared to GCTA or LDAK. |
doi_str_mv | 10.1371/journal.pone.0181269 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1929401154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A500760861</galeid><doaj_id>oai_doaj_org_article_b5dba0626cf94a1ea79579996700c96e</doaj_id><sourcerecordid>A500760861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-68b42fd07bb0c66ad158a1e139eaffba9096a9ea2936aaa8ebda3f3949a56f173</originalsourceid><addsrcrecordid>eNptUl2L1DAULaK46-o_EC34soIzJk2TNj4IwzI6CwvCoM_hNr3tZGibMUmF9Qf4u02d7rIjSx5yc-85537kJslrSpaUFfTj3o5ugG55sAMuCS1pJuST5JxKli1ERtjTB_ZZ8sL7PSGclUI8T86ysqQsZ-V58meDzgSoTGfCbbr2wfQQjB3S0ZuhTSHdYjt24MxvrCfbofdTeHU4OAt6l15u1tvt6v2nydMZDVWHabCptkMww2hH_yGtjd7ZYPv4SK1LocUFhIUdPIbUjkHbHl8mzxroPL6a74vkx5f196vN4ubb1-ur1c1Cc8nCQpRVnjU1KaqKaCGgprwEipRJhKapQBIpINqZZAIASqxqYA2TuQQuGlqwi-TtUffQWa_mEXpFZSZzQinPI-L6iKgt7NXBxXm4W2XBqH8O61oFLhjdoap4XQERmdCNzGMZUEheSClFQYiWAqPW5znbWPVYaxyCg-5E9DQymJ1q7S_FOZekmMq9nAWc_TmiD6o3XmPXwYBxmmr6YJpnnLMIffcf9PHuZlQLsQEzNDbm1ZOoWnFCCkFKQSNq-Qgqnhp7E38WGxP9J4T8SNDOeu-wue-REjVt610xatpWNW9rpL15OJ970t16sr_OR-kl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929401154</pqid></control><display><type>article</type><title>Heritability Estimation using a Regularized Regression Approach (HERRA): Applicable to continuous, dichotomous or age-at-onset outcome</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gorfine, Malka ; Berndt, Sonja I ; Chang-Claude, Jenny ; Hoffmeister, Michael ; Le Marchand, Loic ; Potter, John ; Slattery, Martha L ; Keret, Nir ; Peters, Ulrike ; Hsu, Li</creator><contributor>Wei, Zhi</contributor><creatorcontrib>Gorfine, Malka ; Berndt, Sonja I ; Chang-Claude, Jenny ; Hoffmeister, Michael ; Le Marchand, Loic ; Potter, John ; Slattery, Martha L ; Keret, Nir ; Peters, Ulrike ; Hsu, Li ; Wei, Zhi</creatorcontrib><description>The popular Genome-wide Complex Trait Analysis (GCTA) software uses the random-effects models for estimating the narrow-sense heritability based on GWAS data of unrelated individuals without knowing and identifying the causal loci. Many methods have since extended this approach to various situations. However, since the proportion of causal loci among the variants is typically very small and GCTA uses all variants to calculate the similarities among individuals, the estimation of heritability may be unstable, resulting in a large variance of the estimates. Moreover, if the causal SNPs are not genotyped, GCTA sometimes greatly underestimates the true heritability. We present a novel narrow-sense heritability estimator, named HERRA, using well-developed ultra-high dimensional machine-learning methods, applicable to continuous or dichotomous outcomes, as other existing methods. Additionally, HERRA is applicable to time-to-event or age-at-onset outcome, which, to our knowledge, no existing method can handle. Compared to GCTA and LDAK for continuous and binary outcomes, HERRA often has a smaller variance, and when causal SNPs are not genotyped, HERRA has a much smaller empirical bias. We applied GCTA, LDAK and HERRA to a large colorectal cancer dataset using dichotomous outcome (4,312 cases, 4,356 controls, genotyped using Illumina 300K), the respective heritability estimates of GCTA, LDAK and HERRA are 0.068 (SE = 0.017), 0.072 (SE = 0.021) and 0.110 (SE = 5.19 x 10-3). HERRA yields over 50% increase in heritability estimate compared to GCTA or LDAK.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0181269</identifier><identifier>PMID: 28813438</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Age ; Age of Onset ; Aged ; Aged, 80 and over ; Animals ; Biology and Life Sciences ; Case-Control Studies ; Chromosome Mapping ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - epidemiology ; Colorectal Neoplasms - genetics ; Computer Simulation ; Disease ; Empirical analysis ; Epidemiology ; Female ; Genetic aspects ; Genetic testing ; Genome-Wide Association Study - methods ; Genomes ; Health sciences ; Heredity ; Heritability ; Humans ; Identification and classification ; Identification methods ; Inheritance Patterns ; Innovations ; Learning algorithms ; Likelihood Functions ; Loci ; Male ; Maximum likelihood method ; Medical research ; Medicine and Health Sciences ; Middle Aged ; Models, Genetic ; Normal distribution ; Physical Sciences ; Polymorphism, Single Nucleotide ; Prostate cancer ; Public health ; Quantitative genetics ; Quantitative Trait, Heritable ; Regression analysis ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Software ; Studies ; Variance</subject><ispartof>PloS one, 2017-08, Vol.12 (8), p.e0181269-e0181269</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-68b42fd07bb0c66ad158a1e139eaffba9096a9ea2936aaa8ebda3f3949a56f173</citedby><cites>FETCH-LOGICAL-c593t-68b42fd07bb0c66ad158a1e139eaffba9096a9ea2936aaa8ebda3f3949a56f173</cites><orcidid>0000-0002-1577-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559077/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559077/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28813438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wei, Zhi</contributor><creatorcontrib>Gorfine, Malka</creatorcontrib><creatorcontrib>Berndt, Sonja I</creatorcontrib><creatorcontrib>Chang-Claude, Jenny</creatorcontrib><creatorcontrib>Hoffmeister, Michael</creatorcontrib><creatorcontrib>Le Marchand, Loic</creatorcontrib><creatorcontrib>Potter, John</creatorcontrib><creatorcontrib>Slattery, Martha L</creatorcontrib><creatorcontrib>Keret, Nir</creatorcontrib><creatorcontrib>Peters, Ulrike</creatorcontrib><creatorcontrib>Hsu, Li</creatorcontrib><title>Heritability Estimation using a Regularized Regression Approach (HERRA): Applicable to continuous, dichotomous or age-at-onset outcome</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The popular Genome-wide Complex Trait Analysis (GCTA) software uses the random-effects models for estimating the narrow-sense heritability based on GWAS data of unrelated individuals without knowing and identifying the causal loci. Many methods have since extended this approach to various situations. However, since the proportion of causal loci among the variants is typically very small and GCTA uses all variants to calculate the similarities among individuals, the estimation of heritability may be unstable, resulting in a large variance of the estimates. Moreover, if the causal SNPs are not genotyped, GCTA sometimes greatly underestimates the true heritability. We present a novel narrow-sense heritability estimator, named HERRA, using well-developed ultra-high dimensional machine-learning methods, applicable to continuous or dichotomous outcomes, as other existing methods. Additionally, HERRA is applicable to time-to-event or age-at-onset outcome, which, to our knowledge, no existing method can handle. Compared to GCTA and LDAK for continuous and binary outcomes, HERRA often has a smaller variance, and when causal SNPs are not genotyped, HERRA has a much smaller empirical bias. We applied GCTA, LDAK and HERRA to a large colorectal cancer dataset using dichotomous outcome (4,312 cases, 4,356 controls, genotyped using Illumina 300K), the respective heritability estimates of GCTA, LDAK and HERRA are 0.068 (SE = 0.017), 0.072 (SE = 0.021) and 0.110 (SE = 5.19 x 10-3). HERRA yields over 50% increase in heritability estimate compared to GCTA or LDAK.</description><subject>Adult</subject><subject>Age</subject><subject>Age of Onset</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Case-Control Studies</subject><subject>Chromosome Mapping</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - epidemiology</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Computer Simulation</subject><subject>Disease</subject><subject>Empirical analysis</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Genetic aspects</subject><subject>Genetic testing</subject><subject>Genome-Wide Association Study - methods</subject><subject>Genomes</subject><subject>Health sciences</subject><subject>Heredity</subject><subject>Heritability</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Identification methods</subject><subject>Inheritance Patterns</subject><subject>Innovations</subject><subject>Learning algorithms</subject><subject>Likelihood Functions</subject><subject>Loci</subject><subject>Male</subject><subject>Maximum likelihood method</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Models, Genetic</subject><subject>Normal distribution</subject><subject>Physical Sciences</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Prostate cancer</subject><subject>Public health</subject><subject>Quantitative genetics</subject><subject>Quantitative Trait, Heritable</subject><subject>Regression analysis</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Studies</subject><subject>Variance</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUl2L1DAULaK46-o_EC34soIzJk2TNj4IwzI6CwvCoM_hNr3tZGibMUmF9Qf4u02d7rIjSx5yc-85537kJslrSpaUFfTj3o5ugG55sAMuCS1pJuST5JxKli1ERtjTB_ZZ8sL7PSGclUI8T86ysqQsZ-V58meDzgSoTGfCbbr2wfQQjB3S0ZuhTSHdYjt24MxvrCfbofdTeHU4OAt6l15u1tvt6v2nydMZDVWHabCptkMww2hH_yGtjd7ZYPv4SK1LocUFhIUdPIbUjkHbHl8mzxroPL6a74vkx5f196vN4ubb1-ur1c1Cc8nCQpRVnjU1KaqKaCGgprwEipRJhKapQBIpINqZZAIASqxqYA2TuQQuGlqwi-TtUffQWa_mEXpFZSZzQinPI-L6iKgt7NXBxXm4W2XBqH8O61oFLhjdoap4XQERmdCNzGMZUEheSClFQYiWAqPW5znbWPVYaxyCg-5E9DQymJ1q7S_FOZekmMq9nAWc_TmiD6o3XmPXwYBxmmr6YJpnnLMIffcf9PHuZlQLsQEzNDbm1ZOoWnFCCkFKQSNq-Qgqnhp7E38WGxP9J4T8SNDOeu-wue-REjVt610xatpWNW9rpL15OJ970t16sr_OR-kl</recordid><startdate>20170816</startdate><enddate>20170816</enddate><creator>Gorfine, Malka</creator><creator>Berndt, Sonja I</creator><creator>Chang-Claude, Jenny</creator><creator>Hoffmeister, Michael</creator><creator>Le Marchand, Loic</creator><creator>Potter, John</creator><creator>Slattery, Martha L</creator><creator>Keret, Nir</creator><creator>Peters, Ulrike</creator><creator>Hsu, Li</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1577-6624</orcidid></search><sort><creationdate>20170816</creationdate><title>Heritability Estimation using a Regularized Regression Approach (HERRA): Applicable to continuous, dichotomous or age-at-onset outcome</title><author>Gorfine, Malka ; Berndt, Sonja I ; Chang-Claude, Jenny ; Hoffmeister, Michael ; Le Marchand, Loic ; Potter, John ; Slattery, Martha L ; Keret, Nir ; Peters, Ulrike ; Hsu, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-68b42fd07bb0c66ad158a1e139eaffba9096a9ea2936aaa8ebda3f3949a56f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Age</topic><topic>Age of Onset</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Case-Control Studies</topic><topic>Chromosome Mapping</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - epidemiology</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Computer Simulation</topic><topic>Disease</topic><topic>Empirical analysis</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Genetic aspects</topic><topic>Genetic testing</topic><topic>Genome-Wide Association Study - methods</topic><topic>Genomes</topic><topic>Health sciences</topic><topic>Heredity</topic><topic>Heritability</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Identification methods</topic><topic>Inheritance Patterns</topic><topic>Innovations</topic><topic>Learning algorithms</topic><topic>Likelihood Functions</topic><topic>Loci</topic><topic>Male</topic><topic>Maximum likelihood method</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Models, Genetic</topic><topic>Normal distribution</topic><topic>Physical Sciences</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Prostate cancer</topic><topic>Public health</topic><topic>Quantitative genetics</topic><topic>Quantitative Trait, Heritable</topic><topic>Regression analysis</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Studies</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorfine, Malka</creatorcontrib><creatorcontrib>Berndt, Sonja I</creatorcontrib><creatorcontrib>Chang-Claude, Jenny</creatorcontrib><creatorcontrib>Hoffmeister, Michael</creatorcontrib><creatorcontrib>Le Marchand, Loic</creatorcontrib><creatorcontrib>Potter, John</creatorcontrib><creatorcontrib>Slattery, Martha L</creatorcontrib><creatorcontrib>Keret, Nir</creatorcontrib><creatorcontrib>Peters, Ulrike</creatorcontrib><creatorcontrib>Hsu, Li</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorfine, Malka</au><au>Berndt, Sonja I</au><au>Chang-Claude, Jenny</au><au>Hoffmeister, Michael</au><au>Le Marchand, Loic</au><au>Potter, John</au><au>Slattery, Martha L</au><au>Keret, Nir</au><au>Peters, Ulrike</au><au>Hsu, Li</au><au>Wei, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heritability Estimation using a Regularized Regression Approach (HERRA): Applicable to continuous, dichotomous or age-at-onset outcome</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-08-16</date><risdate>2017</risdate><volume>12</volume><issue>8</issue><spage>e0181269</spage><epage>e0181269</epage><pages>e0181269-e0181269</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The popular Genome-wide Complex Trait Analysis (GCTA) software uses the random-effects models for estimating the narrow-sense heritability based on GWAS data of unrelated individuals without knowing and identifying the causal loci. Many methods have since extended this approach to various situations. However, since the proportion of causal loci among the variants is typically very small and GCTA uses all variants to calculate the similarities among individuals, the estimation of heritability may be unstable, resulting in a large variance of the estimates. Moreover, if the causal SNPs are not genotyped, GCTA sometimes greatly underestimates the true heritability. We present a novel narrow-sense heritability estimator, named HERRA, using well-developed ultra-high dimensional machine-learning methods, applicable to continuous or dichotomous outcomes, as other existing methods. Additionally, HERRA is applicable to time-to-event or age-at-onset outcome, which, to our knowledge, no existing method can handle. Compared to GCTA and LDAK for continuous and binary outcomes, HERRA often has a smaller variance, and when causal SNPs are not genotyped, HERRA has a much smaller empirical bias. We applied GCTA, LDAK and HERRA to a large colorectal cancer dataset using dichotomous outcome (4,312 cases, 4,356 controls, genotyped using Illumina 300K), the respective heritability estimates of GCTA, LDAK and HERRA are 0.068 (SE = 0.017), 0.072 (SE = 0.021) and 0.110 (SE = 5.19 x 10-3). HERRA yields over 50% increase in heritability estimate compared to GCTA or LDAK.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28813438</pmid><doi>10.1371/journal.pone.0181269</doi><orcidid>https://orcid.org/0000-0002-1577-6624</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-08, Vol.12 (8), p.e0181269-e0181269 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1929401154 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adult Age Age of Onset Aged Aged, 80 and over Animals Biology and Life Sciences Case-Control Studies Chromosome Mapping Colorectal cancer Colorectal carcinoma Colorectal Neoplasms - epidemiology Colorectal Neoplasms - genetics Computer Simulation Disease Empirical analysis Epidemiology Female Genetic aspects Genetic testing Genome-Wide Association Study - methods Genomes Health sciences Heredity Heritability Humans Identification and classification Identification methods Inheritance Patterns Innovations Learning algorithms Likelihood Functions Loci Male Maximum likelihood method Medical research Medicine and Health Sciences Middle Aged Models, Genetic Normal distribution Physical Sciences Polymorphism, Single Nucleotide Prostate cancer Public health Quantitative genetics Quantitative Trait, Heritable Regression analysis Single nucleotide polymorphisms Single-nucleotide polymorphism Software Studies Variance |
title | Heritability Estimation using a Regularized Regression Approach (HERRA): Applicable to continuous, dichotomous or age-at-onset outcome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heritability%20Estimation%20using%20a%20Regularized%20Regression%20Approach%20(HERRA):%20Applicable%20to%20continuous,%20dichotomous%20or%20age-at-onset%20outcome&rft.jtitle=PloS%20one&rft.au=Gorfine,%20Malka&rft.date=2017-08-16&rft.volume=12&rft.issue=8&rft.spage=e0181269&rft.epage=e0181269&rft.pages=e0181269-e0181269&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0181269&rft_dat=%3Cgale_plos_%3EA500760861%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1929401154&rft_id=info:pmid/28813438&rft_galeid=A500760861&rft_doaj_id=oai_doaj_org_article_b5dba0626cf94a1ea79579996700c96e&rfr_iscdi=true |