"What is relevant in a text document?": An interpretable machine learning approach
Text documents can be described by a number of abstract concepts such as semantic category, writing style, or sentiment. Machine learning (ML) models have been trained to automatically map documents to these abstract concepts, allowing to annotate very large text collections, more than could be proc...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-08, Vol.12 (8), p.e0181142-e0181142 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0181142 |
---|---|
container_issue | 8 |
container_start_page | e0181142 |
container_title | PloS one |
container_volume | 12 |
creator | Arras, Leila Horn, Franziska Montavon, Grégoire Müller, Klaus-Robert Samek, Wojciech |
description | Text documents can be described by a number of abstract concepts such as semantic category, writing style, or sentiment. Machine learning (ML) models have been trained to automatically map documents to these abstract concepts, allowing to annotate very large text collections, more than could be processed by a human in a lifetime. Besides predicting the text's category very accurately, it is also highly desirable to understand how and why the categorization process takes place. In this paper, we demonstrate that such understanding can be achieved by tracing the classification decision back to individual words using layer-wise relevance propagation (LRP), a recently developed technique for explaining predictions of complex non-linear classifiers. We train two word-based ML models, a convolutional neural network (CNN) and a bag-of-words SVM classifier, on a topic categorization task and adapt the LRP method to decompose the predictions of these models onto words. Resulting scores indicate how much individual words contribute to the overall classification decision. This enables one to distill relevant information from text documents without an explicit semantic information extraction step. We further use the word-wise relevance scores for generating novel vector-based document representations which capture semantic information. Based on these document vectors, we introduce a measure of model explanatory power and show that, although the SVM and CNN models perform similarly in terms of classification accuracy, the latter exhibits a higher level of explainability which makes it more comprehensible for humans and potentially more useful for other applications. |
doi_str_mv | 10.1371/journal.pone.0181142 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1927973688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A500323295</galeid><doaj_id>oai_doaj_org_article_fa524c569ac84999872df00749ef7ce1</doaj_id><sourcerecordid>A500323295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-6df78df7fe5b3a1dcab57865cf9b7b20f5f0c40b3acde0504d0be9fbd65f277e3</originalsourceid><addsrcrecordid>eNqNkl1r2zAUhs3YWLtu_2BspoOxXSSTZMuydrERyj4ChUL3dSlk-ShRkCVXssv276c0bklGL4YRFuc85z3S0ZtlzzGa44Lhdxs_BiftvPcO5gjXGJfkQXaMeUFmFUHFw739UfYkxg1CtKir6nF2ROoaoQrz4-zy9NdaDrmJeQAL19KlvctlPsDvIW-9Gjtww8fT9_nCpcQAoQ8wyMZC3km1Ng5yCzI441a57PvgU_Bp9khLG-HZ9D_Jfnz-9P3s6-z84svybHE-UxUnw6xqNavT0kCbQuJWyYayuqJK84Y1BGmqkSpRyqkWEEVlixrgumkrqgljUJxkL3e6vfVRTOOIAnPCOCuquk7Ecke0Xm5EH0wnwx_hpRE3AR9WQobBKAtCS0pKRSsuVV1yzmtGWo0QKzlopgAnrQ9Tt7HpoFVpLEHaA9HDjDNrsfLXglJaMEKTwJtJIPirEeIgOhMVWCsd-PHm3DXFFNEyoa_-Qe-_3UStZLqAcdqnvmorKhYUoYIUhG_bzu-h0tdCZ1TyjjYpflDw9qAgMVszrOQYo1h-u_x_9uLnIft6j12DtMM6ejsOxrt4CJY7UAUfYwB9N2SMxNb6t9MQW-uLyfqp7MX-A90V3Xq9-AuSRv4g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927973688</pqid></control><display><type>article</type><title>"What is relevant in a text document?": An interpretable machine learning approach</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Arras, Leila ; Horn, Franziska ; Montavon, Grégoire ; Müller, Klaus-Robert ; Samek, Wojciech</creator><contributor>Sidorov, Grigori</contributor><creatorcontrib>Arras, Leila ; Horn, Franziska ; Montavon, Grégoire ; Müller, Klaus-Robert ; Samek, Wojciech ; Sidorov, Grigori</creatorcontrib><description>Text documents can be described by a number of abstract concepts such as semantic category, writing style, or sentiment. Machine learning (ML) models have been trained to automatically map documents to these abstract concepts, allowing to annotate very large text collections, more than could be processed by a human in a lifetime. Besides predicting the text's category very accurately, it is also highly desirable to understand how and why the categorization process takes place. In this paper, we demonstrate that such understanding can be achieved by tracing the classification decision back to individual words using layer-wise relevance propagation (LRP), a recently developed technique for explaining predictions of complex non-linear classifiers. We train two word-based ML models, a convolutional neural network (CNN) and a bag-of-words SVM classifier, on a topic categorization task and adapt the LRP method to decompose the predictions of these models onto words. Resulting scores indicate how much individual words contribute to the overall classification decision. This enables one to distill relevant information from text documents without an explicit semantic information extraction step. We further use the word-wise relevance scores for generating novel vector-based document representations which capture semantic information. Based on these document vectors, we introduce a measure of model explanatory power and show that, although the SVM and CNN models perform similarly in terms of classification accuracy, the latter exhibits a higher level of explainability which makes it more comprehensible for humans and potentially more useful for other applications.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0181142</identifier><identifier>PMID: 28800619</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Artificial intelligence ; Artificial neural networks ; Back propagation ; Biology and Life Sciences ; Classification ; Classifiers ; Computer and Information Sciences ; Documentation ; Engineering and Technology ; Information retrieval ; International conferences ; Language ; Learning algorithms ; Linguistics ; Machine Learning ; Machine translation ; Mathematical models ; Natural language processing ; Neural networks ; Neural Networks, Computer ; Physical Sciences ; Predictions ; Principal Component Analysis ; Propagation ; Representations ; Research and Analysis Methods ; Semantics ; Sentiment analysis ; Social Sciences ; Support Vector Machine ; User generated content ; Vocabulary</subject><ispartof>PloS one, 2017-08, Vol.12 (8), p.e0181142-e0181142</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Arras et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Arras et al 2017 Arras et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-6df78df7fe5b3a1dcab57865cf9b7b20f5f0c40b3acde0504d0be9fbd65f277e3</citedby><cites>FETCH-LOGICAL-c692t-6df78df7fe5b3a1dcab57865cf9b7b20f5f0c40b3acde0504d0be9fbd65f277e3</cites><orcidid>0000-0002-6283-3265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553725/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553725/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28800619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sidorov, Grigori</contributor><creatorcontrib>Arras, Leila</creatorcontrib><creatorcontrib>Horn, Franziska</creatorcontrib><creatorcontrib>Montavon, Grégoire</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><creatorcontrib>Samek, Wojciech</creatorcontrib><title>"What is relevant in a text document?": An interpretable machine learning approach</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Text documents can be described by a number of abstract concepts such as semantic category, writing style, or sentiment. Machine learning (ML) models have been trained to automatically map documents to these abstract concepts, allowing to annotate very large text collections, more than could be processed by a human in a lifetime. Besides predicting the text's category very accurately, it is also highly desirable to understand how and why the categorization process takes place. In this paper, we demonstrate that such understanding can be achieved by tracing the classification decision back to individual words using layer-wise relevance propagation (LRP), a recently developed technique for explaining predictions of complex non-linear classifiers. We train two word-based ML models, a convolutional neural network (CNN) and a bag-of-words SVM classifier, on a topic categorization task and adapt the LRP method to decompose the predictions of these models onto words. Resulting scores indicate how much individual words contribute to the overall classification decision. This enables one to distill relevant information from text documents without an explicit semantic information extraction step. We further use the word-wise relevance scores for generating novel vector-based document representations which capture semantic information. Based on these document vectors, we introduce a measure of model explanatory power and show that, although the SVM and CNN models perform similarly in terms of classification accuracy, the latter exhibits a higher level of explainability which makes it more comprehensible for humans and potentially more useful for other applications.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Biology and Life Sciences</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer and Information Sciences</subject><subject>Documentation</subject><subject>Engineering and Technology</subject><subject>Information retrieval</subject><subject>International conferences</subject><subject>Language</subject><subject>Learning algorithms</subject><subject>Linguistics</subject><subject>Machine Learning</subject><subject>Machine translation</subject><subject>Mathematical models</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Physical Sciences</subject><subject>Predictions</subject><subject>Principal Component Analysis</subject><subject>Propagation</subject><subject>Representations</subject><subject>Research and Analysis Methods</subject><subject>Semantics</subject><subject>Sentiment analysis</subject><subject>Social Sciences</subject><subject>Support Vector Machine</subject><subject>User generated content</subject><subject>Vocabulary</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1r2zAUhs3YWLtu_2BspoOxXSSTZMuydrERyj4ChUL3dSlk-ShRkCVXssv276c0bklGL4YRFuc85z3S0ZtlzzGa44Lhdxs_BiftvPcO5gjXGJfkQXaMeUFmFUHFw739UfYkxg1CtKir6nF2ROoaoQrz4-zy9NdaDrmJeQAL19KlvctlPsDvIW-9Gjtww8fT9_nCpcQAoQ8wyMZC3km1Ng5yCzI441a57PvgU_Bp9khLG-HZ9D_Jfnz-9P3s6-z84svybHE-UxUnw6xqNavT0kCbQuJWyYayuqJK84Y1BGmqkSpRyqkWEEVlixrgumkrqgljUJxkL3e6vfVRTOOIAnPCOCuquk7Ecke0Xm5EH0wnwx_hpRE3AR9WQobBKAtCS0pKRSsuVV1yzmtGWo0QKzlopgAnrQ9Tt7HpoFVpLEHaA9HDjDNrsfLXglJaMEKTwJtJIPirEeIgOhMVWCsd-PHm3DXFFNEyoa_-Qe-_3UStZLqAcdqnvmorKhYUoYIUhG_bzu-h0tdCZ1TyjjYpflDw9qAgMVszrOQYo1h-u_x_9uLnIft6j12DtMM6ejsOxrt4CJY7UAUfYwB9N2SMxNb6t9MQW-uLyfqp7MX-A90V3Xq9-AuSRv4g</recordid><startdate>20170811</startdate><enddate>20170811</enddate><creator>Arras, Leila</creator><creator>Horn, Franziska</creator><creator>Montavon, Grégoire</creator><creator>Müller, Klaus-Robert</creator><creator>Samek, Wojciech</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6283-3265</orcidid></search><sort><creationdate>20170811</creationdate><title>"What is relevant in a text document?": An interpretable machine learning approach</title><author>Arras, Leila ; Horn, Franziska ; Montavon, Grégoire ; Müller, Klaus-Robert ; Samek, Wojciech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-6df78df7fe5b3a1dcab57865cf9b7b20f5f0c40b3acde0504d0be9fbd65f277e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Biology and Life Sciences</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer and Information Sciences</topic><topic>Documentation</topic><topic>Engineering and Technology</topic><topic>Information retrieval</topic><topic>International conferences</topic><topic>Language</topic><topic>Learning algorithms</topic><topic>Linguistics</topic><topic>Machine Learning</topic><topic>Machine translation</topic><topic>Mathematical models</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Physical Sciences</topic><topic>Predictions</topic><topic>Principal Component Analysis</topic><topic>Propagation</topic><topic>Representations</topic><topic>Research and Analysis Methods</topic><topic>Semantics</topic><topic>Sentiment analysis</topic><topic>Social Sciences</topic><topic>Support Vector Machine</topic><topic>User generated content</topic><topic>Vocabulary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arras, Leila</creatorcontrib><creatorcontrib>Horn, Franziska</creatorcontrib><creatorcontrib>Montavon, Grégoire</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><creatorcontrib>Samek, Wojciech</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arras, Leila</au><au>Horn, Franziska</au><au>Montavon, Grégoire</au><au>Müller, Klaus-Robert</au><au>Samek, Wojciech</au><au>Sidorov, Grigori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>"What is relevant in a text document?": An interpretable machine learning approach</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-08-11</date><risdate>2017</risdate><volume>12</volume><issue>8</issue><spage>e0181142</spage><epage>e0181142</epage><pages>e0181142-e0181142</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Text documents can be described by a number of abstract concepts such as semantic category, writing style, or sentiment. Machine learning (ML) models have been trained to automatically map documents to these abstract concepts, allowing to annotate very large text collections, more than could be processed by a human in a lifetime. Besides predicting the text's category very accurately, it is also highly desirable to understand how and why the categorization process takes place. In this paper, we demonstrate that such understanding can be achieved by tracing the classification decision back to individual words using layer-wise relevance propagation (LRP), a recently developed technique for explaining predictions of complex non-linear classifiers. We train two word-based ML models, a convolutional neural network (CNN) and a bag-of-words SVM classifier, on a topic categorization task and adapt the LRP method to decompose the predictions of these models onto words. Resulting scores indicate how much individual words contribute to the overall classification decision. This enables one to distill relevant information from text documents without an explicit semantic information extraction step. We further use the word-wise relevance scores for generating novel vector-based document representations which capture semantic information. Based on these document vectors, we introduce a measure of model explanatory power and show that, although the SVM and CNN models perform similarly in terms of classification accuracy, the latter exhibits a higher level of explainability which makes it more comprehensible for humans and potentially more useful for other applications.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28800619</pmid><doi>10.1371/journal.pone.0181142</doi><tpages>e0181142</tpages><orcidid>https://orcid.org/0000-0002-6283-3265</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-08, Vol.12 (8), p.e0181142-e0181142 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1927973688 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Artificial intelligence Artificial neural networks Back propagation Biology and Life Sciences Classification Classifiers Computer and Information Sciences Documentation Engineering and Technology Information retrieval International conferences Language Learning algorithms Linguistics Machine Learning Machine translation Mathematical models Natural language processing Neural networks Neural Networks, Computer Physical Sciences Predictions Principal Component Analysis Propagation Representations Research and Analysis Methods Semantics Sentiment analysis Social Sciences Support Vector Machine User generated content Vocabulary |
title | "What is relevant in a text document?": An interpretable machine learning approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A38%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%22What%20is%20relevant%20in%20a%20text%20document?%22:%20An%20interpretable%20machine%20learning%20approach&rft.jtitle=PloS%20one&rft.au=Arras,%20Leila&rft.date=2017-08-11&rft.volume=12&rft.issue=8&rft.spage=e0181142&rft.epage=e0181142&rft.pages=e0181142-e0181142&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0181142&rft_dat=%3Cgale_plos_%3EA500323295%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927973688&rft_id=info:pmid/28800619&rft_galeid=A500323295&rft_doaj_id=oai_doaj_org_article_fa524c569ac84999872df00749ef7ce1&rfr_iscdi=true |