Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells

Phenotypic assays using human primary cells are highly valuable tools for target discovery and validation in drug discovery. Expression knockdown (KD) of such targets in these assays allows the investigation of their role in models of disease processes. Therefore, efficient and fast modes of protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-08, Vol.12 (8), p.e0182974
Hauptverfasser: Voets, Olaf, Tielen, Frans, Elstak, Edo, Benschop, Julian, Grimbergen, Max, Stallen, Jan, Janssen, Richard, van Marle, Andre, Essrich, Christian
Format: Artikel
Sprache:eng
Schlagworte:
DNA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e0182974
container_title PloS one
container_volume 12
creator Voets, Olaf
Tielen, Frans
Elstak, Edo
Benschop, Julian
Grimbergen, Max
Stallen, Jan
Janssen, Richard
van Marle, Andre
Essrich, Christian
description Phenotypic assays using human primary cells are highly valuable tools for target discovery and validation in drug discovery. Expression knockdown (KD) of such targets in these assays allows the investigation of their role in models of disease processes. Therefore, efficient and fast modes of protein KD in phenotypic assays are required. The CRISPR/Cas9 system has been shown to be a versatile and efficient means of gene inactivation in immortalized cell lines. Here we describe the use of adenoviral (AdV) CRISPR/Cas9 vectors for efficient gene inactivation in two human primary cell types, normal human lung fibroblasts and human bronchial epithelial cells. The effects of gene inactivation were studied in the TGF-β-induced fibroblast to myofibroblast transition assay (FMT) and the epithelial to mesenchymal transition assay (EMT), which are SMAD3 dependent and reflect pathogenic mechanisms observed in fibrosis. Co-transduction (co-TD) of AdV Cas9 with SMAD3-targeting guide RNAs (gRNAs) resulted in fast and efficient genome editing judged by insertion/deletion (indel) formation, as well as significant reduction of SMAD3 protein expression and nuclear translocation. This led to phenotypic changes downstream of SMAD3 inhibition, including substantially decreased alpha smooth muscle actin and fibronectin 1 expression, which are markers for FMT and EMT, respectively. A direct comparison between co-TD of separate Cas9 and gRNA AdV, versus TD with a single "all-in-one" Cas9/gRNA AdV, revealed that both methods achieve similar levels of indel formation. These data demonstrate that AdV CRISPR/Cas9 is a useful and efficient tool for protein KD in human primary cell phenotypic assays. The use of AdV CRISPR/Cas9 may offer significant advantages over the current existing tools and should enhance target discovery and validation opportunities.
doi_str_mv 10.1371/journal.pone.0182974
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1927973392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A500323287</galeid><doaj_id>oai_doaj_org_article_6f9bc66354654582bb8bb43548d5c92a</doaj_id><sourcerecordid>A500323287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-e4be5e60a15fadca2d91c9d5e8e0fbbfada5039b427f3dda4277c6aab9ed3bd33</originalsourceid><addsrcrecordid>eNqNkl-L1DAUxYso7rr6DUQLguDDzKZJ0yQvwjKoO7CwMqO-hps_bTN0mrFpB-fbm3G6yxQUJA9Jbn735HI4SfI6Q_OMsOx644euhWa-862do4xjwfInyWUmCJ4VGJGnZ-eL5EUIG4Qo4UXxPLnAnMcLZ5fJ-tZVdXNIbVk67Wzbp5Vtbepa0L3bQ-98m6pDCsa2fu86aNLFarn-urpeQBARS-thC22669wWukOqbdOEl8mzEppgX437VfL986dvi9vZ3f2X5eLmbqYZ5f3M5spSWyDIaAlGAzYi08JQyy0qlYo1oIgIlWNWEmMg7kwXAEpYQ5Qh5Cp5e9LdNT7I0Y8gM4GZYIQIHInliTAeNnIcUnpw8k_Bd5WErne6sbIohdJFQWhe0JxyrBRXKo9XbqgWGKLWx_G3QW2t0dGraMdEdPrSulpWfi8ppYSxPAq8GwU6_3Owof_HyCNVQZzKtaWPYnrrgpY3FCGCCeYsUvO_UHEZu3U6JqJ0sT5p-DBpiExvf_UVDCHI5Xr1_-z9jyn7_oytLTR9HXwzHIMTpmB-AnXnQ-hs-ehchuQx0A9uyGOg5Rjo2Pbm3PXHpocEk9_hGfE7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927973392</pqid></control><display><type>article</type><title>Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Voets, Olaf ; Tielen, Frans ; Elstak, Edo ; Benschop, Julian ; Grimbergen, Max ; Stallen, Jan ; Janssen, Richard ; van Marle, Andre ; Essrich, Christian</creator><contributor>Lewin, Alfred S.</contributor><creatorcontrib>Voets, Olaf ; Tielen, Frans ; Elstak, Edo ; Benschop, Julian ; Grimbergen, Max ; Stallen, Jan ; Janssen, Richard ; van Marle, Andre ; Essrich, Christian ; Lewin, Alfred S.</creatorcontrib><description>Phenotypic assays using human primary cells are highly valuable tools for target discovery and validation in drug discovery. Expression knockdown (KD) of such targets in these assays allows the investigation of their role in models of disease processes. Therefore, efficient and fast modes of protein KD in phenotypic assays are required. The CRISPR/Cas9 system has been shown to be a versatile and efficient means of gene inactivation in immortalized cell lines. Here we describe the use of adenoviral (AdV) CRISPR/Cas9 vectors for efficient gene inactivation in two human primary cell types, normal human lung fibroblasts and human bronchial epithelial cells. The effects of gene inactivation were studied in the TGF-β-induced fibroblast to myofibroblast transition assay (FMT) and the epithelial to mesenchymal transition assay (EMT), which are SMAD3 dependent and reflect pathogenic mechanisms observed in fibrosis. Co-transduction (co-TD) of AdV Cas9 with SMAD3-targeting guide RNAs (gRNAs) resulted in fast and efficient genome editing judged by insertion/deletion (indel) formation, as well as significant reduction of SMAD3 protein expression and nuclear translocation. This led to phenotypic changes downstream of SMAD3 inhibition, including substantially decreased alpha smooth muscle actin and fibronectin 1 expression, which are markers for FMT and EMT, respectively. A direct comparison between co-TD of separate Cas9 and gRNA AdV, versus TD with a single "all-in-one" Cas9/gRNA AdV, revealed that both methods achieve similar levels of indel formation. These data demonstrate that AdV CRISPR/Cas9 is a useful and efficient tool for protein KD in human primary cell phenotypic assays. The use of AdV CRISPR/Cas9 may offer significant advantages over the current existing tools and should enhance target discovery and validation opportunities.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0182974</identifier><identifier>PMID: 28800587</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Actins - genetics ; Actins - metabolism ; Adenoviridae - genetics ; Adenoviridae - metabolism ; Adenoviruses ; Assaying ; Base Sequence ; Biology and Life Sciences ; Biotechnology ; Bronchi - cytology ; Bronchi - metabolism ; Cell lines ; Clonal deletion ; Clustered Regularly Interspaced Short Palindromic Repeats ; CRISPR ; CRISPR-Cas Systems ; Deactivation ; Deoxyribonucleic acid ; DNA ; Drug discovery ; Editing ; Endonucleases - genetics ; Endonucleases - metabolism ; Engineering and Technology ; Epithelial cells ; Epithelial Cells - cytology ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Epithelial-Mesenchymal Transition - drug effects ; Epithelial-Mesenchymal Transition - genetics ; Expression vectors ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Fibronectin ; Fibronectins ; Fibronectins - genetics ; Fibronectins - metabolism ; Fibrosis ; Gene Editing ; Gene expression ; Gene Expression Regulation ; Gene Silencing ; Genetic engineering ; Genetic Vectors - chemistry ; Genetic Vectors - metabolism ; Genome editing ; Genome, Human ; Genomes ; gRNA ; Humans ; Inactivation ; INDEL Mutation ; Insertion ; Lungs ; Medicine and Health Sciences ; Mesenchyme ; Mutagenesis ; Mutation ; Nuclear transport ; Physical Sciences ; Plasmids ; Primary Cell Culture ; Protein Transport ; Research and Analysis Methods ; RNA, Guide, CRISPR-Cas Systems - genetics ; RNA, Guide, CRISPR-Cas Systems - metabolism ; Smad3 protein ; Smad3 Protein - antagonists &amp; inhibitors ; Smad3 Protein - genetics ; Smad3 Protein - metabolism ; Smooth muscle ; Stem cells ; Transduction, Genetic ; Transforming Growth Factor beta - pharmacology ; Translocation</subject><ispartof>PloS one, 2017-08, Vol.12 (8), p.e0182974</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Voets et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Voets et al 2017 Voets et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-e4be5e60a15fadca2d91c9d5e8e0fbbfada5039b427f3dda4277c6aab9ed3bd33</citedby><cites>FETCH-LOGICAL-c758t-e4be5e60a15fadca2d91c9d5e8e0fbbfada5039b427f3dda4277c6aab9ed3bd33</cites><orcidid>0000-0002-7827-9211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553774/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553774/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28800587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lewin, Alfred S.</contributor><creatorcontrib>Voets, Olaf</creatorcontrib><creatorcontrib>Tielen, Frans</creatorcontrib><creatorcontrib>Elstak, Edo</creatorcontrib><creatorcontrib>Benschop, Julian</creatorcontrib><creatorcontrib>Grimbergen, Max</creatorcontrib><creatorcontrib>Stallen, Jan</creatorcontrib><creatorcontrib>Janssen, Richard</creatorcontrib><creatorcontrib>van Marle, Andre</creatorcontrib><creatorcontrib>Essrich, Christian</creatorcontrib><title>Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Phenotypic assays using human primary cells are highly valuable tools for target discovery and validation in drug discovery. Expression knockdown (KD) of such targets in these assays allows the investigation of their role in models of disease processes. Therefore, efficient and fast modes of protein KD in phenotypic assays are required. The CRISPR/Cas9 system has been shown to be a versatile and efficient means of gene inactivation in immortalized cell lines. Here we describe the use of adenoviral (AdV) CRISPR/Cas9 vectors for efficient gene inactivation in two human primary cell types, normal human lung fibroblasts and human bronchial epithelial cells. The effects of gene inactivation were studied in the TGF-β-induced fibroblast to myofibroblast transition assay (FMT) and the epithelial to mesenchymal transition assay (EMT), which are SMAD3 dependent and reflect pathogenic mechanisms observed in fibrosis. Co-transduction (co-TD) of AdV Cas9 with SMAD3-targeting guide RNAs (gRNAs) resulted in fast and efficient genome editing judged by insertion/deletion (indel) formation, as well as significant reduction of SMAD3 protein expression and nuclear translocation. This led to phenotypic changes downstream of SMAD3 inhibition, including substantially decreased alpha smooth muscle actin and fibronectin 1 expression, which are markers for FMT and EMT, respectively. A direct comparison between co-TD of separate Cas9 and gRNA AdV, versus TD with a single "all-in-one" Cas9/gRNA AdV, revealed that both methods achieve similar levels of indel formation. These data demonstrate that AdV CRISPR/Cas9 is a useful and efficient tool for protein KD in human primary cell phenotypic assays. The use of AdV CRISPR/Cas9 may offer significant advantages over the current existing tools and should enhance target discovery and validation opportunities.</description><subject>Actin</subject><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Adenoviridae - genetics</subject><subject>Adenoviridae - metabolism</subject><subject>Adenoviruses</subject><subject>Assaying</subject><subject>Base Sequence</subject><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Bronchi - cytology</subject><subject>Bronchi - metabolism</subject><subject>Cell lines</subject><subject>Clonal deletion</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Deactivation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Drug discovery</subject><subject>Editing</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Engineering and Technology</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelial-Mesenchymal Transition - drug effects</subject><subject>Epithelial-Mesenchymal Transition - genetics</subject><subject>Expression vectors</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Fibronectin</subject><subject>Fibronectins</subject><subject>Fibronectins - genetics</subject><subject>Fibronectins - metabolism</subject><subject>Fibrosis</subject><subject>Gene Editing</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene Silencing</subject><subject>Genetic engineering</subject><subject>Genetic Vectors - chemistry</subject><subject>Genetic Vectors - metabolism</subject><subject>Genome editing</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>gRNA</subject><subject>Humans</subject><subject>Inactivation</subject><subject>INDEL Mutation</subject><subject>Insertion</subject><subject>Lungs</subject><subject>Medicine and Health Sciences</subject><subject>Mesenchyme</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Nuclear transport</subject><subject>Physical Sciences</subject><subject>Plasmids</subject><subject>Primary Cell Culture</subject><subject>Protein Transport</subject><subject>Research and Analysis Methods</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>RNA, Guide, CRISPR-Cas Systems - metabolism</subject><subject>Smad3 protein</subject><subject>Smad3 Protein - antagonists &amp; inhibitors</subject><subject>Smad3 Protein - genetics</subject><subject>Smad3 Protein - metabolism</subject><subject>Smooth muscle</subject><subject>Stem cells</subject><subject>Transduction, Genetic</subject><subject>Transforming Growth Factor beta - pharmacology</subject><subject>Translocation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl-L1DAUxYso7rr6DUQLguDDzKZJ0yQvwjKoO7CwMqO-hps_bTN0mrFpB-fbm3G6yxQUJA9Jbn735HI4SfI6Q_OMsOx644euhWa-862do4xjwfInyWUmCJ4VGJGnZ-eL5EUIG4Qo4UXxPLnAnMcLZ5fJ-tZVdXNIbVk67Wzbp5Vtbepa0L3bQ-98m6pDCsa2fu86aNLFarn-urpeQBARS-thC22669wWukOqbdOEl8mzEppgX437VfL986dvi9vZ3f2X5eLmbqYZ5f3M5spSWyDIaAlGAzYi08JQyy0qlYo1oIgIlWNWEmMg7kwXAEpYQ5Qh5Cp5e9LdNT7I0Y8gM4GZYIQIHInliTAeNnIcUnpw8k_Bd5WErne6sbIohdJFQWhe0JxyrBRXKo9XbqgWGKLWx_G3QW2t0dGraMdEdPrSulpWfi8ppYSxPAq8GwU6_3Owof_HyCNVQZzKtaWPYnrrgpY3FCGCCeYsUvO_UHEZu3U6JqJ0sT5p-DBpiExvf_UVDCHI5Xr1_-z9jyn7_oytLTR9HXwzHIMTpmB-AnXnQ-hs-ehchuQx0A9uyGOg5Rjo2Pbm3PXHpocEk9_hGfE7</recordid><startdate>20170811</startdate><enddate>20170811</enddate><creator>Voets, Olaf</creator><creator>Tielen, Frans</creator><creator>Elstak, Edo</creator><creator>Benschop, Julian</creator><creator>Grimbergen, Max</creator><creator>Stallen, Jan</creator><creator>Janssen, Richard</creator><creator>van Marle, Andre</creator><creator>Essrich, Christian</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7827-9211</orcidid></search><sort><creationdate>20170811</creationdate><title>Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells</title><author>Voets, Olaf ; Tielen, Frans ; Elstak, Edo ; Benschop, Julian ; Grimbergen, Max ; Stallen, Jan ; Janssen, Richard ; van Marle, Andre ; Essrich, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-e4be5e60a15fadca2d91c9d5e8e0fbbfada5039b427f3dda4277c6aab9ed3bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actin</topic><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Adenoviridae - genetics</topic><topic>Adenoviridae - metabolism</topic><topic>Adenoviruses</topic><topic>Assaying</topic><topic>Base Sequence</topic><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Bronchi - cytology</topic><topic>Bronchi - metabolism</topic><topic>Cell lines</topic><topic>Clonal deletion</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Deactivation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Drug discovery</topic><topic>Editing</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Engineering and Technology</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelial-Mesenchymal Transition - drug effects</topic><topic>Epithelial-Mesenchymal Transition - genetics</topic><topic>Expression vectors</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Fibronectin</topic><topic>Fibronectins</topic><topic>Fibronectins - genetics</topic><topic>Fibronectins - metabolism</topic><topic>Fibrosis</topic><topic>Gene Editing</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene Silencing</topic><topic>Genetic engineering</topic><topic>Genetic Vectors - chemistry</topic><topic>Genetic Vectors - metabolism</topic><topic>Genome editing</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>gRNA</topic><topic>Humans</topic><topic>Inactivation</topic><topic>INDEL Mutation</topic><topic>Insertion</topic><topic>Lungs</topic><topic>Medicine and Health Sciences</topic><topic>Mesenchyme</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Nuclear transport</topic><topic>Physical Sciences</topic><topic>Plasmids</topic><topic>Primary Cell Culture</topic><topic>Protein Transport</topic><topic>Research and Analysis Methods</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>RNA, Guide, CRISPR-Cas Systems - metabolism</topic><topic>Smad3 protein</topic><topic>Smad3 Protein - antagonists &amp; inhibitors</topic><topic>Smad3 Protein - genetics</topic><topic>Smad3 Protein - metabolism</topic><topic>Smooth muscle</topic><topic>Stem cells</topic><topic>Transduction, Genetic</topic><topic>Transforming Growth Factor beta - pharmacology</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voets, Olaf</creatorcontrib><creatorcontrib>Tielen, Frans</creatorcontrib><creatorcontrib>Elstak, Edo</creatorcontrib><creatorcontrib>Benschop, Julian</creatorcontrib><creatorcontrib>Grimbergen, Max</creatorcontrib><creatorcontrib>Stallen, Jan</creatorcontrib><creatorcontrib>Janssen, Richard</creatorcontrib><creatorcontrib>van Marle, Andre</creatorcontrib><creatorcontrib>Essrich, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voets, Olaf</au><au>Tielen, Frans</au><au>Elstak, Edo</au><au>Benschop, Julian</au><au>Grimbergen, Max</au><au>Stallen, Jan</au><au>Janssen, Richard</au><au>van Marle, Andre</au><au>Essrich, Christian</au><au>Lewin, Alfred S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-08-11</date><risdate>2017</risdate><volume>12</volume><issue>8</issue><spage>e0182974</spage><pages>e0182974-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Phenotypic assays using human primary cells are highly valuable tools for target discovery and validation in drug discovery. Expression knockdown (KD) of such targets in these assays allows the investigation of their role in models of disease processes. Therefore, efficient and fast modes of protein KD in phenotypic assays are required. The CRISPR/Cas9 system has been shown to be a versatile and efficient means of gene inactivation in immortalized cell lines. Here we describe the use of adenoviral (AdV) CRISPR/Cas9 vectors for efficient gene inactivation in two human primary cell types, normal human lung fibroblasts and human bronchial epithelial cells. The effects of gene inactivation were studied in the TGF-β-induced fibroblast to myofibroblast transition assay (FMT) and the epithelial to mesenchymal transition assay (EMT), which are SMAD3 dependent and reflect pathogenic mechanisms observed in fibrosis. Co-transduction (co-TD) of AdV Cas9 with SMAD3-targeting guide RNAs (gRNAs) resulted in fast and efficient genome editing judged by insertion/deletion (indel) formation, as well as significant reduction of SMAD3 protein expression and nuclear translocation. This led to phenotypic changes downstream of SMAD3 inhibition, including substantially decreased alpha smooth muscle actin and fibronectin 1 expression, which are markers for FMT and EMT, respectively. A direct comparison between co-TD of separate Cas9 and gRNA AdV, versus TD with a single "all-in-one" Cas9/gRNA AdV, revealed that both methods achieve similar levels of indel formation. These data demonstrate that AdV CRISPR/Cas9 is a useful and efficient tool for protein KD in human primary cell phenotypic assays. The use of AdV CRISPR/Cas9 may offer significant advantages over the current existing tools and should enhance target discovery and validation opportunities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28800587</pmid><doi>10.1371/journal.pone.0182974</doi><tpages>e0182974</tpages><orcidid>https://orcid.org/0000-0002-7827-9211</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-08, Vol.12 (8), p.e0182974
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1927973392
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Actin
Actins - genetics
Actins - metabolism
Adenoviridae - genetics
Adenoviridae - metabolism
Adenoviruses
Assaying
Base Sequence
Biology and Life Sciences
Biotechnology
Bronchi - cytology
Bronchi - metabolism
Cell lines
Clonal deletion
Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR
CRISPR-Cas Systems
Deactivation
Deoxyribonucleic acid
DNA
Drug discovery
Editing
Endonucleases - genetics
Endonucleases - metabolism
Engineering and Technology
Epithelial cells
Epithelial Cells - cytology
Epithelial Cells - drug effects
Epithelial Cells - metabolism
Epithelial-Mesenchymal Transition - drug effects
Epithelial-Mesenchymal Transition - genetics
Expression vectors
Fibroblasts
Fibroblasts - cytology
Fibroblasts - drug effects
Fibroblasts - metabolism
Fibronectin
Fibronectins
Fibronectins - genetics
Fibronectins - metabolism
Fibrosis
Gene Editing
Gene expression
Gene Expression Regulation
Gene Silencing
Genetic engineering
Genetic Vectors - chemistry
Genetic Vectors - metabolism
Genome editing
Genome, Human
Genomes
gRNA
Humans
Inactivation
INDEL Mutation
Insertion
Lungs
Medicine and Health Sciences
Mesenchyme
Mutagenesis
Mutation
Nuclear transport
Physical Sciences
Plasmids
Primary Cell Culture
Protein Transport
Research and Analysis Methods
RNA, Guide, CRISPR-Cas Systems - genetics
RNA, Guide, CRISPR-Cas Systems - metabolism
Smad3 protein
Smad3 Protein - antagonists & inhibitors
Smad3 Protein - genetics
Smad3 Protein - metabolism
Smooth muscle
Stem cells
Transduction, Genetic
Transforming Growth Factor beta - pharmacology
Translocation
title Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20efficient%20gene%20inactivation%20by%20adenoviral%20CRISPR/Cas9%20in%20human%20primary%20cells&rft.jtitle=PloS%20one&rft.au=Voets,%20Olaf&rft.date=2017-08-11&rft.volume=12&rft.issue=8&rft.spage=e0182974&rft.pages=e0182974-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0182974&rft_dat=%3Cgale_plos_%3EA500323287%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1927973392&rft_id=info:pmid/28800587&rft_galeid=A500323287&rft_doaj_id=oai_doaj_org_article_6f9bc66354654582bb8bb43548d5c92a&rfr_iscdi=true