Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation

Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-07, Vol.12 (7), p.e0181882-e0181882
Hauptverfasser: Tang, Liang, Zhang, Jinjie, Cheng, Pengle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0181882
container_issue 7
container_start_page e0181882
container_title PloS one
container_volume 12
creator Tang, Liang
Zhang, Jinjie
Cheng, Pengle
description Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic-plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis.
doi_str_mv 10.1371/journal.pone.0181882
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1923718786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499322998</galeid><doaj_id>oai_doaj_org_article_8af970ce5eea4d78b07a8ef90b8c7f92</doaj_id><sourcerecordid>A499322998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4d3d033d73f60decdc5f115639e65b09239d498e527587f6ea8b5ac7982ae0cf3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QLgujFjEnTNsmNsCzqDiws-HUnIU1OOhnSZk1acfz1Zna6y1T2QnKRkDzve5KTc7LsOUYrTCh-t_Vj6KVbXfseVggzzFjxIDvFnBTLukDk4dH6JHsS4xahirC6fpydFIyWNeHoNPtx4TvfQm__gM47r8HZvs07GDZee-fbXW58yDGrK5Q7O2zs2C2t7_NGDgOE3V4yOsjHXkPInQwt5BqSpJNDwp5mj4x0EZ5N8yL79vHD1_OL5eXVp_X52eVS1bwYlqUmGhGiKTE10qC0qgzGVboh1FWDeEG4LjmDqqAVo6YGyZpKKspZIQEpQxbZy4PvtfNRTJmJAiclxYyyOhHrA6G93IrrYDsZdsJLK242fGiFDINVDgSThlOkoAKQpaasQVQyMBw1TFGTLBfZ-yna2HSgFfRDkG5mOj_p7Ua0_peoqoJxzpLBm8kg-J8jxEF0NipwTvbgx5t7lzVC6YMS-uof9P7XTVQr0wNsb3yKq_am4qzkqQqKQ9jVPVQaGjqrUhkZm_ZngrczQWIG-D20coxRrL98_n_26vucfX3EbkC6YRO9G_clE-dgeQBV8DEGMHdJxkjsu-A2G2LfBWLqgiR7cfxBd6Lbsid_AQ3NAvY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923718786</pqid></control><display><type>article</type><title>Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tang, Liang ; Zhang, Jinjie ; Cheng, Pengle</creator><contributor>Hu, Xiaosong</contributor><creatorcontrib>Tang, Liang ; Zhang, Jinjie ; Cheng, Pengle ; Hu, Xiaosong</creatorcontrib><description>Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic-plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0181882</identifier><identifier>PMID: 28746390</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology and Life Sciences ; Boundary conditions ; Cell culture ; Compression ; Compression tests ; Computation ; Computer applications ; Computer Simulation ; Crashworthiness ; Deformation ; Deformation effects ; Electric Power Supplies - standards ; Electric vehicles ; Electricity ; Engineering ; Engineering schools ; Failure analysis ; Homology (Biology) ; Impact strength ; Ions - chemistry ; Lithium ; Lithium - chemistry ; Lithium batteries ; Lithium-ion batteries ; Mathematical models ; Mathematical problems ; Mechanical Phenomena ; Mechanical properties ; Medicine and Health Sciences ; Models, Theoretical ; Numerical simulations ; Packing ; Physical Sciences ; Plastics ; Product safety ; Rechargeable batteries ; Reproducibility of Results ; Research and Analysis Methods ; Rigid-body dynamics ; Safety ; Safety engineering ; Short circuits ; Simulation ; Traffic accidents &amp; safety ; Unit cell</subject><ispartof>PloS one, 2017-07, Vol.12 (7), p.e0181882-e0181882</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Tang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Tang et al 2017 Tang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4d3d033d73f60decdc5f115639e65b09239d498e527587f6ea8b5ac7982ae0cf3</citedby><cites>FETCH-LOGICAL-c692t-4d3d033d73f60decdc5f115639e65b09239d498e527587f6ea8b5ac7982ae0cf3</cites><orcidid>0000-0001-6977-6534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528998/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528998/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28746390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hu, Xiaosong</contributor><creatorcontrib>Tang, Liang</creatorcontrib><creatorcontrib>Zhang, Jinjie</creatorcontrib><creatorcontrib>Cheng, Pengle</creatorcontrib><title>Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic-plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Boundary conditions</subject><subject>Cell culture</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Crashworthiness</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Electric Power Supplies - standards</subject><subject>Electric vehicles</subject><subject>Electricity</subject><subject>Engineering</subject><subject>Engineering schools</subject><subject>Failure analysis</subject><subject>Homology (Biology)</subject><subject>Impact strength</subject><subject>Ions - chemistry</subject><subject>Lithium</subject><subject>Lithium - chemistry</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Mechanical Phenomena</subject><subject>Mechanical properties</subject><subject>Medicine and Health Sciences</subject><subject>Models, Theoretical</subject><subject>Numerical simulations</subject><subject>Packing</subject><subject>Physical Sciences</subject><subject>Plastics</subject><subject>Product safety</subject><subject>Rechargeable batteries</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Rigid-body dynamics</subject><subject>Safety</subject><subject>Safety engineering</subject><subject>Short circuits</subject><subject>Simulation</subject><subject>Traffic accidents &amp; safety</subject><subject>Unit cell</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QLgujFjEnTNsmNsCzqDiws-HUnIU1OOhnSZk1acfz1Zna6y1T2QnKRkDzve5KTc7LsOUYrTCh-t_Vj6KVbXfseVggzzFjxIDvFnBTLukDk4dH6JHsS4xahirC6fpydFIyWNeHoNPtx4TvfQm__gM47r8HZvs07GDZee-fbXW58yDGrK5Q7O2zs2C2t7_NGDgOE3V4yOsjHXkPInQwt5BqSpJNDwp5mj4x0EZ5N8yL79vHD1_OL5eXVp_X52eVS1bwYlqUmGhGiKTE10qC0qgzGVboh1FWDeEG4LjmDqqAVo6YGyZpKKspZIQEpQxbZy4PvtfNRTJmJAiclxYyyOhHrA6G93IrrYDsZdsJLK242fGiFDINVDgSThlOkoAKQpaasQVQyMBw1TFGTLBfZ-yna2HSgFfRDkG5mOj_p7Ua0_peoqoJxzpLBm8kg-J8jxEF0NipwTvbgx5t7lzVC6YMS-uof9P7XTVQr0wNsb3yKq_am4qzkqQqKQ9jVPVQaGjqrUhkZm_ZngrczQWIG-D20coxRrL98_n_26vucfX3EbkC6YRO9G_clE-dgeQBV8DEGMHdJxkjsu-A2G2LfBWLqgiR7cfxBd6Lbsid_AQ3NAvY</recordid><startdate>20170726</startdate><enddate>20170726</enddate><creator>Tang, Liang</creator><creator>Zhang, Jinjie</creator><creator>Cheng, Pengle</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6977-6534</orcidid></search><sort><creationdate>20170726</creationdate><title>Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation</title><author>Tang, Liang ; Zhang, Jinjie ; Cheng, Pengle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4d3d033d73f60decdc5f115639e65b09239d498e527587f6ea8b5ac7982ae0cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Boundary conditions</topic><topic>Cell culture</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Crashworthiness</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Electric Power Supplies - standards</topic><topic>Electric vehicles</topic><topic>Electricity</topic><topic>Engineering</topic><topic>Engineering schools</topic><topic>Failure analysis</topic><topic>Homology (Biology)</topic><topic>Impact strength</topic><topic>Ions - chemistry</topic><topic>Lithium</topic><topic>Lithium - chemistry</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Mechanical Phenomena</topic><topic>Mechanical properties</topic><topic>Medicine and Health Sciences</topic><topic>Models, Theoretical</topic><topic>Numerical simulations</topic><topic>Packing</topic><topic>Physical Sciences</topic><topic>Plastics</topic><topic>Product safety</topic><topic>Rechargeable batteries</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Rigid-body dynamics</topic><topic>Safety</topic><topic>Safety engineering</topic><topic>Short circuits</topic><topic>Simulation</topic><topic>Traffic accidents &amp; safety</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Liang</creatorcontrib><creatorcontrib>Zhang, Jinjie</creatorcontrib><creatorcontrib>Cheng, Pengle</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Liang</au><au>Zhang, Jinjie</au><au>Cheng, Pengle</au><au>Hu, Xiaosong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-07-26</date><risdate>2017</risdate><volume>12</volume><issue>7</issue><spage>e0181882</spage><epage>e0181882</epage><pages>e0181882-e0181882</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic-plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28746390</pmid><doi>10.1371/journal.pone.0181882</doi><tpages>e0181882</tpages><orcidid>https://orcid.org/0000-0001-6977-6534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-07, Vol.12 (7), p.e0181882-e0181882
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1923718786
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Biology and Life Sciences
Boundary conditions
Cell culture
Compression
Compression tests
Computation
Computer applications
Computer Simulation
Crashworthiness
Deformation
Deformation effects
Electric Power Supplies - standards
Electric vehicles
Electricity
Engineering
Engineering schools
Failure analysis
Homology (Biology)
Impact strength
Ions - chemistry
Lithium
Lithium - chemistry
Lithium batteries
Lithium-ion batteries
Mathematical models
Mathematical problems
Mechanical Phenomena
Mechanical properties
Medicine and Health Sciences
Models, Theoretical
Numerical simulations
Packing
Physical Sciences
Plastics
Product safety
Rechargeable batteries
Reproducibility of Results
Research and Analysis Methods
Rigid-body dynamics
Safety
Safety engineering
Short circuits
Simulation
Traffic accidents & safety
Unit cell
title Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogenized%20modeling%20methodology%20for%2018650%20lithium-ion%20battery%20module%20under%20large%20deformation&rft.jtitle=PloS%20one&rft.au=Tang,%20Liang&rft.date=2017-07-26&rft.volume=12&rft.issue=7&rft.spage=e0181882&rft.epage=e0181882&rft.pages=e0181882-e0181882&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0181882&rft_dat=%3Cgale_plos_%3EA499322998%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923718786&rft_id=info:pmid/28746390&rft_galeid=A499322998&rft_doaj_id=oai_doaj_org_article_8af970ce5eea4d78b07a8ef90b8c7f92&rfr_iscdi=true