Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation
Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigi...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-07, Vol.12 (7), p.e0181882-e0181882 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0181882 |
---|---|
container_issue | 7 |
container_start_page | e0181882 |
container_title | PloS one |
container_volume | 12 |
creator | Tang, Liang Zhang, Jinjie Cheng, Pengle |
description | Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic-plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis. |
doi_str_mv | 10.1371/journal.pone.0181882 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1923718786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499322998</galeid><doaj_id>oai_doaj_org_article_8af970ce5eea4d78b07a8ef90b8c7f92</doaj_id><sourcerecordid>A499322998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4d3d033d73f60decdc5f115639e65b09239d498e527587f6ea8b5ac7982ae0cf3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QLgujFjEnTNsmNsCzqDiws-HUnIU1OOhnSZk1acfz1Zna6y1T2QnKRkDzve5KTc7LsOUYrTCh-t_Vj6KVbXfseVggzzFjxIDvFnBTLukDk4dH6JHsS4xahirC6fpydFIyWNeHoNPtx4TvfQm__gM47r8HZvs07GDZee-fbXW58yDGrK5Q7O2zs2C2t7_NGDgOE3V4yOsjHXkPInQwt5BqSpJNDwp5mj4x0EZ5N8yL79vHD1_OL5eXVp_X52eVS1bwYlqUmGhGiKTE10qC0qgzGVboh1FWDeEG4LjmDqqAVo6YGyZpKKspZIQEpQxbZy4PvtfNRTJmJAiclxYyyOhHrA6G93IrrYDsZdsJLK242fGiFDINVDgSThlOkoAKQpaasQVQyMBw1TFGTLBfZ-yna2HSgFfRDkG5mOj_p7Ua0_peoqoJxzpLBm8kg-J8jxEF0NipwTvbgx5t7lzVC6YMS-uof9P7XTVQr0wNsb3yKq_am4qzkqQqKQ9jVPVQaGjqrUhkZm_ZngrczQWIG-D20coxRrL98_n_26vucfX3EbkC6YRO9G_clE-dgeQBV8DEGMHdJxkjsu-A2G2LfBWLqgiR7cfxBd6Lbsid_AQ3NAvY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923718786</pqid></control><display><type>article</type><title>Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tang, Liang ; Zhang, Jinjie ; Cheng, Pengle</creator><contributor>Hu, Xiaosong</contributor><creatorcontrib>Tang, Liang ; Zhang, Jinjie ; Cheng, Pengle ; Hu, Xiaosong</creatorcontrib><description>Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic-plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0181882</identifier><identifier>PMID: 28746390</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology and Life Sciences ; Boundary conditions ; Cell culture ; Compression ; Compression tests ; Computation ; Computer applications ; Computer Simulation ; Crashworthiness ; Deformation ; Deformation effects ; Electric Power Supplies - standards ; Electric vehicles ; Electricity ; Engineering ; Engineering schools ; Failure analysis ; Homology (Biology) ; Impact strength ; Ions - chemistry ; Lithium ; Lithium - chemistry ; Lithium batteries ; Lithium-ion batteries ; Mathematical models ; Mathematical problems ; Mechanical Phenomena ; Mechanical properties ; Medicine and Health Sciences ; Models, Theoretical ; Numerical simulations ; Packing ; Physical Sciences ; Plastics ; Product safety ; Rechargeable batteries ; Reproducibility of Results ; Research and Analysis Methods ; Rigid-body dynamics ; Safety ; Safety engineering ; Short circuits ; Simulation ; Traffic accidents & safety ; Unit cell</subject><ispartof>PloS one, 2017-07, Vol.12 (7), p.e0181882-e0181882</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Tang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Tang et al 2017 Tang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4d3d033d73f60decdc5f115639e65b09239d498e527587f6ea8b5ac7982ae0cf3</citedby><cites>FETCH-LOGICAL-c692t-4d3d033d73f60decdc5f115639e65b09239d498e527587f6ea8b5ac7982ae0cf3</cites><orcidid>0000-0001-6977-6534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528998/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528998/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28746390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hu, Xiaosong</contributor><creatorcontrib>Tang, Liang</creatorcontrib><creatorcontrib>Zhang, Jinjie</creatorcontrib><creatorcontrib>Cheng, Pengle</creatorcontrib><title>Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic-plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Boundary conditions</subject><subject>Cell culture</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Crashworthiness</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Electric Power Supplies - standards</subject><subject>Electric vehicles</subject><subject>Electricity</subject><subject>Engineering</subject><subject>Engineering schools</subject><subject>Failure analysis</subject><subject>Homology (Biology)</subject><subject>Impact strength</subject><subject>Ions - chemistry</subject><subject>Lithium</subject><subject>Lithium - chemistry</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Mechanical Phenomena</subject><subject>Mechanical properties</subject><subject>Medicine and Health Sciences</subject><subject>Models, Theoretical</subject><subject>Numerical simulations</subject><subject>Packing</subject><subject>Physical Sciences</subject><subject>Plastics</subject><subject>Product safety</subject><subject>Rechargeable batteries</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Rigid-body dynamics</subject><subject>Safety</subject><subject>Safety engineering</subject><subject>Short circuits</subject><subject>Simulation</subject><subject>Traffic accidents & safety</subject><subject>Unit cell</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QLgujFjEnTNsmNsCzqDiws-HUnIU1OOhnSZk1acfz1Zna6y1T2QnKRkDzve5KTc7LsOUYrTCh-t_Vj6KVbXfseVggzzFjxIDvFnBTLukDk4dH6JHsS4xahirC6fpydFIyWNeHoNPtx4TvfQm__gM47r8HZvs07GDZee-fbXW58yDGrK5Q7O2zs2C2t7_NGDgOE3V4yOsjHXkPInQwt5BqSpJNDwp5mj4x0EZ5N8yL79vHD1_OL5eXVp_X52eVS1bwYlqUmGhGiKTE10qC0qgzGVboh1FWDeEG4LjmDqqAVo6YGyZpKKspZIQEpQxbZy4PvtfNRTJmJAiclxYyyOhHrA6G93IrrYDsZdsJLK242fGiFDINVDgSThlOkoAKQpaasQVQyMBw1TFGTLBfZ-yna2HSgFfRDkG5mOj_p7Ua0_peoqoJxzpLBm8kg-J8jxEF0NipwTvbgx5t7lzVC6YMS-uof9P7XTVQr0wNsb3yKq_am4qzkqQqKQ9jVPVQaGjqrUhkZm_ZngrczQWIG-D20coxRrL98_n_26vucfX3EbkC6YRO9G_clE-dgeQBV8DEGMHdJxkjsu-A2G2LfBWLqgiR7cfxBd6Lbsid_AQ3NAvY</recordid><startdate>20170726</startdate><enddate>20170726</enddate><creator>Tang, Liang</creator><creator>Zhang, Jinjie</creator><creator>Cheng, Pengle</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6977-6534</orcidid></search><sort><creationdate>20170726</creationdate><title>Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation</title><author>Tang, Liang ; Zhang, Jinjie ; Cheng, Pengle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4d3d033d73f60decdc5f115639e65b09239d498e527587f6ea8b5ac7982ae0cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Boundary conditions</topic><topic>Cell culture</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Crashworthiness</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Electric Power Supplies - standards</topic><topic>Electric vehicles</topic><topic>Electricity</topic><topic>Engineering</topic><topic>Engineering schools</topic><topic>Failure analysis</topic><topic>Homology (Biology)</topic><topic>Impact strength</topic><topic>Ions - chemistry</topic><topic>Lithium</topic><topic>Lithium - chemistry</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Mechanical Phenomena</topic><topic>Mechanical properties</topic><topic>Medicine and Health Sciences</topic><topic>Models, Theoretical</topic><topic>Numerical simulations</topic><topic>Packing</topic><topic>Physical Sciences</topic><topic>Plastics</topic><topic>Product safety</topic><topic>Rechargeable batteries</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Rigid-body dynamics</topic><topic>Safety</topic><topic>Safety engineering</topic><topic>Short circuits</topic><topic>Simulation</topic><topic>Traffic accidents & safety</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Liang</creatorcontrib><creatorcontrib>Zhang, Jinjie</creatorcontrib><creatorcontrib>Cheng, Pengle</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Liang</au><au>Zhang, Jinjie</au><au>Cheng, Pengle</au><au>Hu, Xiaosong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-07-26</date><risdate>2017</risdate><volume>12</volume><issue>7</issue><spage>e0181882</spage><epage>e0181882</epage><pages>e0181882-e0181882</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic-plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28746390</pmid><doi>10.1371/journal.pone.0181882</doi><tpages>e0181882</tpages><orcidid>https://orcid.org/0000-0001-6977-6534</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-07, Vol.12 (7), p.e0181882-e0181882 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1923718786 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Analysis Biology and Life Sciences Boundary conditions Cell culture Compression Compression tests Computation Computer applications Computer Simulation Crashworthiness Deformation Deformation effects Electric Power Supplies - standards Electric vehicles Electricity Engineering Engineering schools Failure analysis Homology (Biology) Impact strength Ions - chemistry Lithium Lithium - chemistry Lithium batteries Lithium-ion batteries Mathematical models Mathematical problems Mechanical Phenomena Mechanical properties Medicine and Health Sciences Models, Theoretical Numerical simulations Packing Physical Sciences Plastics Product safety Rechargeable batteries Reproducibility of Results Research and Analysis Methods Rigid-body dynamics Safety Safety engineering Short circuits Simulation Traffic accidents & safety Unit cell |
title | Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogenized%20modeling%20methodology%20for%2018650%20lithium-ion%20battery%20module%20under%20large%20deformation&rft.jtitle=PloS%20one&rft.au=Tang,%20Liang&rft.date=2017-07-26&rft.volume=12&rft.issue=7&rft.spage=e0181882&rft.epage=e0181882&rft.pages=e0181882-e0181882&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0181882&rft_dat=%3Cgale_plos_%3EA499322998%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923718786&rft_id=info:pmid/28746390&rft_galeid=A499322998&rft_doaj_id=oai_doaj_org_article_8af970ce5eea4d78b07a8ef90b8c7f92&rfr_iscdi=true |