The mechanism of monomer transfer between two structurally distinct PrP oligomers
In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conduc...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-07, Vol.12 (7), p.e0180538 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | e0180538 |
container_title | PloS one |
container_volume | 12 |
creator | Armiento, Aurora Moireau, Philippe Martin, Davy Lepejova, Nad'a Doumic, Marie Rezaei, Human |
description | In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population. |
doi_str_mv | 10.1371/journal.pone.0180538 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1923718706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499322977</galeid><doaj_id>oai_doaj_org_article_277ae605feb149f3b39ca3a2e4cf0916</doaj_id><sourcerecordid>A499322977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-c9cb5889591ac128f13d1bbc2137e66a5e120b32ee9edbee8a1c2972c558d50c3</originalsourceid><addsrcrecordid>eNqNkl-L1DAUxYso7rr6DUQLgrAPM-ZP06YvwrCoOzCwq66-hjS9nWZpkzFJd91vb-p0l6koSB8abn7nXO7JTZKXGC0xLfC7azs4I7vlzhpYIswRo_xRcoxLShY5QfTxwfkoeeb9NRqRPH-aHBFeZDnNyHHy-aqFtAfVSqN9n9om7a2xPbg0OGl8Ew8VhFsAk4Zbm_rgBhUGJ7vuLq21D9qokF66y9R2ejvq_PPkSSM7Dy-m_0ny7eOHq7Pzxebi0_pstVmoguRhoUpVMc5LVmKpMOENpjWuKkXicJDnkgEmqKIEoIS6AuASK1IWRDHGa4YUPUle7313nfViSsMLXJKYDi9QHon1nqitvBY7p3vp7oSVWvwuWLcV0gWtOhCkKCTkiDVQ4axsaEVLJakkkKkGlXj0ej91G6oeagUm5tPNTOc3Rrdia28EY4TzjESD071B-4fsfLURYw1hVmQ0y29wZN9MzZz9MYAP_xhvorYyTqBNY2Nj1WuvxCor49PHuIpILf9Cxa-GXqu4O42O9ZngdCaITICfYSsH78X665f_Zy--z9m3B2wLsgutt90QtDV-DmZ7UDnrvYPmIS6MxLj692mIcfXFtPpR9urwhR5E97tOfwEv-f62</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923718706</pqid></control><display><type>article</type><title>The mechanism of monomer transfer between two structurally distinct PrP oligomers</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Armiento, Aurora ; Moireau, Philippe ; Martin, Davy ; Lepejova, Nad'a ; Doumic, Marie ; Rezaei, Human</creator><contributor>Lasmezas, Corinne Ida</contributor><creatorcontrib>Armiento, Aurora ; Moireau, Philippe ; Martin, Davy ; Lepejova, Nad'a ; Doumic, Marie ; Rezaei, Human ; Lasmezas, Corinne Ida</creatorcontrib><description>In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0180538</identifier><identifier>PMID: 28746342</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agglomeration ; Algorithms ; Analysis ; Analysis of PDEs ; Animals ; Applied mathematics ; Assemblies ; Biochemistry, Molecular Biology ; Biological properties ; Chromatography ; Computer Simulation ; Creutzfeldt-Jakob disease ; Data assimilation ; Data collection ; Disintegration ; Kinetics ; Life Sciences ; Mathematics ; Medicine and Health Sciences ; Models, Chemical ; Molecular biology ; Molecular weight ; Monomers ; Neurotoxicity ; Oligomers ; Physical Sciences ; Polymerization ; Prions ; Prions - chemistry ; Protein Aggregates ; Protein Aggregation, Pathological ; Protein Multimerization ; Protein Unfolding ; Proteins ; Research and Analysis Methods ; Sheep ; Size distribution</subject><ispartof>PloS one, 2017-07, Vol.12 (7), p.e0180538</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Armiento et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2017 Armiento et al 2017 Armiento et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-c9cb5889591ac128f13d1bbc2137e66a5e120b32ee9edbee8a1c2972c558d50c3</citedby><cites>FETCH-LOGICAL-c726t-c9cb5889591ac128f13d1bbc2137e66a5e120b32ee9edbee8a1c2972c558d50c3</cites><orcidid>0000-0002-3183-8215 ; 0000-0003-2421-716X ; 0000-0001-9996-5213 ; 0000-0001-9672-748X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528842/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528842/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28746342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01574346$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Lasmezas, Corinne Ida</contributor><creatorcontrib>Armiento, Aurora</creatorcontrib><creatorcontrib>Moireau, Philippe</creatorcontrib><creatorcontrib>Martin, Davy</creatorcontrib><creatorcontrib>Lepejova, Nad'a</creatorcontrib><creatorcontrib>Doumic, Marie</creatorcontrib><creatorcontrib>Rezaei, Human</creatorcontrib><title>The mechanism of monomer transfer between two structurally distinct PrP oligomers</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population.</description><subject>Agglomeration</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Analysis of PDEs</subject><subject>Animals</subject><subject>Applied mathematics</subject><subject>Assemblies</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological properties</subject><subject>Chromatography</subject><subject>Computer Simulation</subject><subject>Creutzfeldt-Jakob disease</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Disintegration</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Mathematics</subject><subject>Medicine and Health Sciences</subject><subject>Models, Chemical</subject><subject>Molecular biology</subject><subject>Molecular weight</subject><subject>Monomers</subject><subject>Neurotoxicity</subject><subject>Oligomers</subject><subject>Physical Sciences</subject><subject>Polymerization</subject><subject>Prions</subject><subject>Prions - chemistry</subject><subject>Protein Aggregates</subject><subject>Protein Aggregation, Pathological</subject><subject>Protein Multimerization</subject><subject>Protein Unfolding</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Sheep</subject><subject>Size distribution</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl-L1DAUxYso7rr6DUQLgrAPM-ZP06YvwrCoOzCwq66-hjS9nWZpkzFJd91vb-p0l6koSB8abn7nXO7JTZKXGC0xLfC7azs4I7vlzhpYIswRo_xRcoxLShY5QfTxwfkoeeb9NRqRPH-aHBFeZDnNyHHy-aqFtAfVSqN9n9om7a2xPbg0OGl8Ew8VhFsAk4Zbm_rgBhUGJ7vuLq21D9qokF66y9R2ejvq_PPkSSM7Dy-m_0ny7eOHq7Pzxebi0_pstVmoguRhoUpVMc5LVmKpMOENpjWuKkXicJDnkgEmqKIEoIS6AuASK1IWRDHGa4YUPUle7313nfViSsMLXJKYDi9QHon1nqitvBY7p3vp7oSVWvwuWLcV0gWtOhCkKCTkiDVQ4axsaEVLJakkkKkGlXj0ej91G6oeagUm5tPNTOc3Rrdia28EY4TzjESD071B-4fsfLURYw1hVmQ0y29wZN9MzZz9MYAP_xhvorYyTqBNY2Nj1WuvxCor49PHuIpILf9Cxa-GXqu4O42O9ZngdCaITICfYSsH78X665f_Zy--z9m3B2wLsgutt90QtDV-DmZ7UDnrvYPmIS6MxLj692mIcfXFtPpR9urwhR5E97tOfwEv-f62</recordid><startdate>20170726</startdate><enddate>20170726</enddate><creator>Armiento, Aurora</creator><creator>Moireau, Philippe</creator><creator>Martin, Davy</creator><creator>Lepejova, Nad'a</creator><creator>Doumic, Marie</creator><creator>Rezaei, Human</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3183-8215</orcidid><orcidid>https://orcid.org/0000-0003-2421-716X</orcidid><orcidid>https://orcid.org/0000-0001-9996-5213</orcidid><orcidid>https://orcid.org/0000-0001-9672-748X</orcidid></search><sort><creationdate>20170726</creationdate><title>The mechanism of monomer transfer between two structurally distinct PrP oligomers</title><author>Armiento, Aurora ; Moireau, Philippe ; Martin, Davy ; Lepejova, Nad'a ; Doumic, Marie ; Rezaei, Human</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-c9cb5889591ac128f13d1bbc2137e66a5e120b32ee9edbee8a1c2972c558d50c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agglomeration</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Analysis of PDEs</topic><topic>Animals</topic><topic>Applied mathematics</topic><topic>Assemblies</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological properties</topic><topic>Chromatography</topic><topic>Computer Simulation</topic><topic>Creutzfeldt-Jakob disease</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Disintegration</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Mathematics</topic><topic>Medicine and Health Sciences</topic><topic>Models, Chemical</topic><topic>Molecular biology</topic><topic>Molecular weight</topic><topic>Monomers</topic><topic>Neurotoxicity</topic><topic>Oligomers</topic><topic>Physical Sciences</topic><topic>Polymerization</topic><topic>Prions</topic><topic>Prions - chemistry</topic><topic>Protein Aggregates</topic><topic>Protein Aggregation, Pathological</topic><topic>Protein Multimerization</topic><topic>Protein Unfolding</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Sheep</topic><topic>Size distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armiento, Aurora</creatorcontrib><creatorcontrib>Moireau, Philippe</creatorcontrib><creatorcontrib>Martin, Davy</creatorcontrib><creatorcontrib>Lepejova, Nad'a</creatorcontrib><creatorcontrib>Doumic, Marie</creatorcontrib><creatorcontrib>Rezaei, Human</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armiento, Aurora</au><au>Moireau, Philippe</au><au>Martin, Davy</au><au>Lepejova, Nad'a</au><au>Doumic, Marie</au><au>Rezaei, Human</au><au>Lasmezas, Corinne Ida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mechanism of monomer transfer between two structurally distinct PrP oligomers</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-07-26</date><risdate>2017</risdate><volume>12</volume><issue>7</issue><spage>e0180538</spage><pages>e0180538-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28746342</pmid><doi>10.1371/journal.pone.0180538</doi><tpages>e0180538</tpages><orcidid>https://orcid.org/0000-0002-3183-8215</orcidid><orcidid>https://orcid.org/0000-0003-2421-716X</orcidid><orcidid>https://orcid.org/0000-0001-9996-5213</orcidid><orcidid>https://orcid.org/0000-0001-9672-748X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-07, Vol.12 (7), p.e0180538 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1923718706 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agglomeration Algorithms Analysis Analysis of PDEs Animals Applied mathematics Assemblies Biochemistry, Molecular Biology Biological properties Chromatography Computer Simulation Creutzfeldt-Jakob disease Data assimilation Data collection Disintegration Kinetics Life Sciences Mathematics Medicine and Health Sciences Models, Chemical Molecular biology Molecular weight Monomers Neurotoxicity Oligomers Physical Sciences Polymerization Prions Prions - chemistry Protein Aggregates Protein Aggregation, Pathological Protein Multimerization Protein Unfolding Proteins Research and Analysis Methods Sheep Size distribution |
title | The mechanism of monomer transfer between two structurally distinct PrP oligomers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mechanism%20of%20monomer%20transfer%20between%20two%20structurally%20distinct%20PrP%20oligomers&rft.jtitle=PloS%20one&rft.au=Armiento,%20Aurora&rft.date=2017-07-26&rft.volume=12&rft.issue=7&rft.spage=e0180538&rft.pages=e0180538-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0180538&rft_dat=%3Cgale_plos_%3EA499322977%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923718706&rft_id=info:pmid/28746342&rft_galeid=A499322977&rft_doaj_id=oai_doaj_org_article_277ae605feb149f3b39ca3a2e4cf0916&rfr_iscdi=true |