TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis
The use of micropatterns has transformed investigations of dynamic biological processes by enabling the reproducible analysis of live cells using time-lapse fluorescence microscopy. With micropatterns, thousands of individual cells can be efficiently imaged in parallel, rendering the approach well s...
Gespeichert in:
Veröffentlicht in: | PloS one 2017-07, Vol.12 (7), p.e0179752-e0179752 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0179752 |
---|---|
container_issue | 7 |
container_start_page | e0179752 |
container_title | PloS one |
container_volume | 12 |
creator | Burri, Olivier Wolf, Benita Seitz, Arne Gönczy, Pierre |
description | The use of micropatterns has transformed investigations of dynamic biological processes by enabling the reproducible analysis of live cells using time-lapse fluorescence microscopy. With micropatterns, thousands of individual cells can be efficiently imaged in parallel, rendering the approach well suited for screening projects. Despite being powerful, such screens remain challenging in terms of data handling and analysis. Typically, only a fraction of micropatterns is occupied in a manner suitable to monitor a given phenotypic output. Moreover, the presence of dying or otherwise compromised cells complicates the analysis. Therefore, focusing strictly on relevant cells in such large time-lapse microscopy dataset poses interesting analysis challenges that are not readily met by existing software packages. This motivated us to develop an image analysis pipeline that handles all necessary image processing steps within one open-source platform to detect and analyze individual cells seeded on micropatterns through mitosis. We introduce a comprehensive image analysis pipeline running on Fiji termed TRACMIT (pipeline for TRACking and analyzing cells on micropatterns through MITosis). TRACMIT was developed to rapidly and accurately assess the orientation of the mitotic spindle during metaphase in time-lapse fluorescence microscopy of human cells expressing mCherry::histone 2B and plated on L-shaped micropatterns. This solution enables one to perform the entire analysis from the raw data, avoiding the need to save intermediate images, thereby decreasing data volume and thus reducing the data that needs to be processed. We first select micropatterns containing a single cell and then identify anaphase figures in the time-lapse recording. Next, TRACMIT tracks back in time until metaphase, when the angle of the mitotic spindle with respect to the micropattern is assessed. We designed the pipeline to allow for manual validation of selected cells with a simple user interface, and to enable analysis of cells plated on micropatterns of different shapes. For ease of use, the entire pipeline is provided as a series of Fiji/ImageJ macros, grouped into an ActionBar. In conclusion, the open source TRACMIT pipeline enables high-throughput analysis of single mitotic cells on micropatterns, thus accurately and efficiently allowing automatic determination of spindle positioning from time-lapse recordings. |
doi_str_mv | 10.1371/journal.pone.0179752 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1923718425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499323032</galeid><doaj_id>oai_doaj_org_article_cef50f7ec14a4d61b7f4b64126681106</doaj_id><sourcerecordid>A499323032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-7cfe55be502f9c00e87235b04969cfdf4b353abe29cca0841a8e85adc560c4e63</originalsourceid><addsrcrecordid>eNptUl2LEzEUHURx1-o_EB0QxJfWJJNkZnwQSvGjsCJIfY6ZzE2bmiazyczC-uvNbGeXVnwISW7OPffek5NlLzFa4KLE7_d-CE7aRecdLBAu65KRR9klrgsy5wQVj0_OF9mzGPcIsaLi_Gl2QaqS8nS-zH5tfixX39abD_nS5aA1qN7cQN6ZDqxxkGsf8j5I9du4bS5dm5a0t3_GmwJrY-5dfjAq-E72PQQX834X_LDdpWjvo4nPsyda2ggvpn2W_fz8abP6Or_6_mW9Wl7NFatYPy-VBsYaYIjoWiEEVUkK1iBa81rpVtOmYIVsgNRKSVRRLCuomGwV40hR4MUse33k7ayPYhInClyTJFZFCUuI9RHRerkXXTAHGW6Fl0bcBXzYChl6oywIBZohXYLCVNKW46ZMDXCKCecVxmis9nGqNjQHaBW4JJI9Iz1_cWYntv5GMEYqwotE8G4iCP56gNiLg4mjotKBH-76phwhymmCvvkH-v_pJtRWpgGM0378tpFULGmdjFCgtGbZ2xPUDqTtd9HboTfexXMgPQLT18YYQD_MhpEY_XffhBj9Jyb_pbRXp7o8JN0brvgLvfbXzQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923718425</pqid></control><display><type>article</type><title>TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Burri, Olivier ; Wolf, Benita ; Seitz, Arne ; Gönczy, Pierre</creator><creatorcontrib>Burri, Olivier ; Wolf, Benita ; Seitz, Arne ; Gönczy, Pierre</creatorcontrib><description>The use of micropatterns has transformed investigations of dynamic biological processes by enabling the reproducible analysis of live cells using time-lapse fluorescence microscopy. With micropatterns, thousands of individual cells can be efficiently imaged in parallel, rendering the approach well suited for screening projects. Despite being powerful, such screens remain challenging in terms of data handling and analysis. Typically, only a fraction of micropatterns is occupied in a manner suitable to monitor a given phenotypic output. Moreover, the presence of dying or otherwise compromised cells complicates the analysis. Therefore, focusing strictly on relevant cells in such large time-lapse microscopy dataset poses interesting analysis challenges that are not readily met by existing software packages. This motivated us to develop an image analysis pipeline that handles all necessary image processing steps within one open-source platform to detect and analyze individual cells seeded on micropatterns through mitosis. We introduce a comprehensive image analysis pipeline running on Fiji termed TRACMIT (pipeline for TRACking and analyzing cells on micropatterns through MITosis). TRACMIT was developed to rapidly and accurately assess the orientation of the mitotic spindle during metaphase in time-lapse fluorescence microscopy of human cells expressing mCherry::histone 2B and plated on L-shaped micropatterns. This solution enables one to perform the entire analysis from the raw data, avoiding the need to save intermediate images, thereby decreasing data volume and thus reducing the data that needs to be processed. We first select micropatterns containing a single cell and then identify anaphase figures in the time-lapse recording. Next, TRACMIT tracks back in time until metaphase, when the angle of the mitotic spindle with respect to the micropattern is assessed. We designed the pipeline to allow for manual validation of selected cells with a simple user interface, and to enable analysis of cells plated on micropatterns of different shapes. For ease of use, the entire pipeline is provided as a series of Fiji/ImageJ macros, grouped into an ActionBar. In conclusion, the open source TRACMIT pipeline enables high-throughput analysis of single mitotic cells on micropatterns, thus accurately and efficiently allowing automatic determination of spindle positioning from time-lapse recordings.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0179752</identifier><identifier>PMID: 28746386</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anaphase ; Biological activity ; Biology and Life Sciences ; Cell division ; Cell Tracking - methods ; Cells (Biology) ; Data processing ; Datasets ; Fluorescence ; Fluorescence microscopy ; Freeware ; HeLa Cells ; Histones - genetics ; Histones - metabolism ; Humans ; Image analysis ; Image detection ; Image processing ; Life sciences ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Medical research ; Metaphase ; Micropatterning ; Microscopy ; Microscopy, Fluorescence - methods ; Mitosis ; Red Fluorescent Protein ; Reproducibility of Results ; Research and analysis methods ; Screening projects ; Software packages ; Source code ; Spindle Apparatus ; Time-Lapse Imaging - methods ; Tracking</subject><ispartof>PloS one, 2017-07, Vol.12 (7), p.e0179752-e0179752</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Burri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Burri et al 2017 Burri et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-7cfe55be502f9c00e87235b04969cfdf4b353abe29cca0841a8e85adc560c4e63</citedby><cites>FETCH-LOGICAL-c585t-7cfe55be502f9c00e87235b04969cfdf4b353abe29cca0841a8e85adc560c4e63</cites><orcidid>0000-0002-6305-6883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528263/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528263/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28746386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burri, Olivier</creatorcontrib><creatorcontrib>Wolf, Benita</creatorcontrib><creatorcontrib>Seitz, Arne</creatorcontrib><creatorcontrib>Gönczy, Pierre</creatorcontrib><title>TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The use of micropatterns has transformed investigations of dynamic biological processes by enabling the reproducible analysis of live cells using time-lapse fluorescence microscopy. With micropatterns, thousands of individual cells can be efficiently imaged in parallel, rendering the approach well suited for screening projects. Despite being powerful, such screens remain challenging in terms of data handling and analysis. Typically, only a fraction of micropatterns is occupied in a manner suitable to monitor a given phenotypic output. Moreover, the presence of dying or otherwise compromised cells complicates the analysis. Therefore, focusing strictly on relevant cells in such large time-lapse microscopy dataset poses interesting analysis challenges that are not readily met by existing software packages. This motivated us to develop an image analysis pipeline that handles all necessary image processing steps within one open-source platform to detect and analyze individual cells seeded on micropatterns through mitosis. We introduce a comprehensive image analysis pipeline running on Fiji termed TRACMIT (pipeline for TRACking and analyzing cells on micropatterns through MITosis). TRACMIT was developed to rapidly and accurately assess the orientation of the mitotic spindle during metaphase in time-lapse fluorescence microscopy of human cells expressing mCherry::histone 2B and plated on L-shaped micropatterns. This solution enables one to perform the entire analysis from the raw data, avoiding the need to save intermediate images, thereby decreasing data volume and thus reducing the data that needs to be processed. We first select micropatterns containing a single cell and then identify anaphase figures in the time-lapse recording. Next, TRACMIT tracks back in time until metaphase, when the angle of the mitotic spindle with respect to the micropattern is assessed. We designed the pipeline to allow for manual validation of selected cells with a simple user interface, and to enable analysis of cells plated on micropatterns of different shapes. For ease of use, the entire pipeline is provided as a series of Fiji/ImageJ macros, grouped into an ActionBar. In conclusion, the open source TRACMIT pipeline enables high-throughput analysis of single mitotic cells on micropatterns, thus accurately and efficiently allowing automatic determination of spindle positioning from time-lapse recordings.</description><subject>Anaphase</subject><subject>Biological activity</subject><subject>Biology and Life Sciences</subject><subject>Cell division</subject><subject>Cell Tracking - methods</subject><subject>Cells (Biology)</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Freeware</subject><subject>HeLa Cells</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Life sciences</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Medical research</subject><subject>Metaphase</subject><subject>Micropatterning</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Mitosis</subject><subject>Red Fluorescent Protein</subject><subject>Reproducibility of Results</subject><subject>Research and analysis methods</subject><subject>Screening projects</subject><subject>Software packages</subject><subject>Source code</subject><subject>Spindle Apparatus</subject><subject>Time-Lapse Imaging - methods</subject><subject>Tracking</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUl2LEzEUHURx1-o_EB0QxJfWJJNkZnwQSvGjsCJIfY6ZzE2bmiazyczC-uvNbGeXVnwISW7OPffek5NlLzFa4KLE7_d-CE7aRecdLBAu65KRR9klrgsy5wQVj0_OF9mzGPcIsaLi_Gl2QaqS8nS-zH5tfixX39abD_nS5aA1qN7cQN6ZDqxxkGsf8j5I9du4bS5dm5a0t3_GmwJrY-5dfjAq-E72PQQX834X_LDdpWjvo4nPsyda2ggvpn2W_fz8abP6Or_6_mW9Wl7NFatYPy-VBsYaYIjoWiEEVUkK1iBa81rpVtOmYIVsgNRKSVRRLCuomGwV40hR4MUse33k7ayPYhInClyTJFZFCUuI9RHRerkXXTAHGW6Fl0bcBXzYChl6oywIBZohXYLCVNKW46ZMDXCKCecVxmis9nGqNjQHaBW4JJI9Iz1_cWYntv5GMEYqwotE8G4iCP56gNiLg4mjotKBH-76phwhymmCvvkH-v_pJtRWpgGM0378tpFULGmdjFCgtGbZ2xPUDqTtd9HboTfexXMgPQLT18YYQD_MhpEY_XffhBj9Jyb_pbRXp7o8JN0brvgLvfbXzQ</recordid><startdate>20170726</startdate><enddate>20170726</enddate><creator>Burri, Olivier</creator><creator>Wolf, Benita</creator><creator>Seitz, Arne</creator><creator>Gönczy, Pierre</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6305-6883</orcidid></search><sort><creationdate>20170726</creationdate><title>TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis</title><author>Burri, Olivier ; Wolf, Benita ; Seitz, Arne ; Gönczy, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-7cfe55be502f9c00e87235b04969cfdf4b353abe29cca0841a8e85adc560c4e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anaphase</topic><topic>Biological activity</topic><topic>Biology and Life Sciences</topic><topic>Cell division</topic><topic>Cell Tracking - methods</topic><topic>Cells (Biology)</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Freeware</topic><topic>HeLa Cells</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Life sciences</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Medical research</topic><topic>Metaphase</topic><topic>Micropatterning</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Mitosis</topic><topic>Red Fluorescent Protein</topic><topic>Reproducibility of Results</topic><topic>Research and analysis methods</topic><topic>Screening projects</topic><topic>Software packages</topic><topic>Source code</topic><topic>Spindle Apparatus</topic><topic>Time-Lapse Imaging - methods</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burri, Olivier</creatorcontrib><creatorcontrib>Wolf, Benita</creatorcontrib><creatorcontrib>Seitz, Arne</creatorcontrib><creatorcontrib>Gönczy, Pierre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burri, Olivier</au><au>Wolf, Benita</au><au>Seitz, Arne</au><au>Gönczy, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-07-26</date><risdate>2017</risdate><volume>12</volume><issue>7</issue><spage>e0179752</spage><epage>e0179752</epage><pages>e0179752-e0179752</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The use of micropatterns has transformed investigations of dynamic biological processes by enabling the reproducible analysis of live cells using time-lapse fluorescence microscopy. With micropatterns, thousands of individual cells can be efficiently imaged in parallel, rendering the approach well suited for screening projects. Despite being powerful, such screens remain challenging in terms of data handling and analysis. Typically, only a fraction of micropatterns is occupied in a manner suitable to monitor a given phenotypic output. Moreover, the presence of dying or otherwise compromised cells complicates the analysis. Therefore, focusing strictly on relevant cells in such large time-lapse microscopy dataset poses interesting analysis challenges that are not readily met by existing software packages. This motivated us to develop an image analysis pipeline that handles all necessary image processing steps within one open-source platform to detect and analyze individual cells seeded on micropatterns through mitosis. We introduce a comprehensive image analysis pipeline running on Fiji termed TRACMIT (pipeline for TRACking and analyzing cells on micropatterns through MITosis). TRACMIT was developed to rapidly and accurately assess the orientation of the mitotic spindle during metaphase in time-lapse fluorescence microscopy of human cells expressing mCherry::histone 2B and plated on L-shaped micropatterns. This solution enables one to perform the entire analysis from the raw data, avoiding the need to save intermediate images, thereby decreasing data volume and thus reducing the data that needs to be processed. We first select micropatterns containing a single cell and then identify anaphase figures in the time-lapse recording. Next, TRACMIT tracks back in time until metaphase, when the angle of the mitotic spindle with respect to the micropattern is assessed. We designed the pipeline to allow for manual validation of selected cells with a simple user interface, and to enable analysis of cells plated on micropatterns of different shapes. For ease of use, the entire pipeline is provided as a series of Fiji/ImageJ macros, grouped into an ActionBar. In conclusion, the open source TRACMIT pipeline enables high-throughput analysis of single mitotic cells on micropatterns, thus accurately and efficiently allowing automatic determination of spindle positioning from time-lapse recordings.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28746386</pmid><doi>10.1371/journal.pone.0179752</doi><orcidid>https://orcid.org/0000-0002-6305-6883</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2017-07, Vol.12 (7), p.e0179752-e0179752 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1923718425 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Anaphase Biological activity Biology and Life Sciences Cell division Cell Tracking - methods Cells (Biology) Data processing Datasets Fluorescence Fluorescence microscopy Freeware HeLa Cells Histones - genetics Histones - metabolism Humans Image analysis Image detection Image processing Life sciences Luminescent Proteins - genetics Luminescent Proteins - metabolism Medical research Metaphase Micropatterning Microscopy Microscopy, Fluorescence - methods Mitosis Red Fluorescent Protein Reproducibility of Results Research and analysis methods Screening projects Software packages Source code Spindle Apparatus Time-Lapse Imaging - methods Tracking |
title | TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRACMIT:%20An%20effective%20pipeline%20for%20tracking%20and%20analyzing%20cells%20on%20micropatterns%20through%20mitosis&rft.jtitle=PloS%20one&rft.au=Burri,%20Olivier&rft.date=2017-07-26&rft.volume=12&rft.issue=7&rft.spage=e0179752&rft.epage=e0179752&rft.pages=e0179752-e0179752&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0179752&rft_dat=%3Cgale_plos_%3EA499323032%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923718425&rft_id=info:pmid/28746386&rft_galeid=A499323032&rft_doaj_id=oai_doaj_org_article_cef50f7ec14a4d61b7f4b64126681106&rfr_iscdi=true |