TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis

The use of micropatterns has transformed investigations of dynamic biological processes by enabling the reproducible analysis of live cells using time-lapse fluorescence microscopy. With micropatterns, thousands of individual cells can be efficiently imaged in parallel, rendering the approach well s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2017-07, Vol.12 (7), p.e0179752-e0179752
Hauptverfasser: Burri, Olivier, Wolf, Benita, Seitz, Arne, Gönczy, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0179752
container_issue 7
container_start_page e0179752
container_title PloS one
container_volume 12
creator Burri, Olivier
Wolf, Benita
Seitz, Arne
Gönczy, Pierre
description The use of micropatterns has transformed investigations of dynamic biological processes by enabling the reproducible analysis of live cells using time-lapse fluorescence microscopy. With micropatterns, thousands of individual cells can be efficiently imaged in parallel, rendering the approach well suited for screening projects. Despite being powerful, such screens remain challenging in terms of data handling and analysis. Typically, only a fraction of micropatterns is occupied in a manner suitable to monitor a given phenotypic output. Moreover, the presence of dying or otherwise compromised cells complicates the analysis. Therefore, focusing strictly on relevant cells in such large time-lapse microscopy dataset poses interesting analysis challenges that are not readily met by existing software packages. This motivated us to develop an image analysis pipeline that handles all necessary image processing steps within one open-source platform to detect and analyze individual cells seeded on micropatterns through mitosis. We introduce a comprehensive image analysis pipeline running on Fiji termed TRACMIT (pipeline for TRACking and analyzing cells on micropatterns through MITosis). TRACMIT was developed to rapidly and accurately assess the orientation of the mitotic spindle during metaphase in time-lapse fluorescence microscopy of human cells expressing mCherry::histone 2B and plated on L-shaped micropatterns. This solution enables one to perform the entire analysis from the raw data, avoiding the need to save intermediate images, thereby decreasing data volume and thus reducing the data that needs to be processed. We first select micropatterns containing a single cell and then identify anaphase figures in the time-lapse recording. Next, TRACMIT tracks back in time until metaphase, when the angle of the mitotic spindle with respect to the micropattern is assessed. We designed the pipeline to allow for manual validation of selected cells with a simple user interface, and to enable analysis of cells plated on micropatterns of different shapes. For ease of use, the entire pipeline is provided as a series of Fiji/ImageJ macros, grouped into an ActionBar. In conclusion, the open source TRACMIT pipeline enables high-throughput analysis of single mitotic cells on micropatterns, thus accurately and efficiently allowing automatic determination of spindle positioning from time-lapse recordings.
doi_str_mv 10.1371/journal.pone.0179752
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1923718425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499323032</galeid><doaj_id>oai_doaj_org_article_cef50f7ec14a4d61b7f4b64126681106</doaj_id><sourcerecordid>A499323032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-7cfe55be502f9c00e87235b04969cfdf4b353abe29cca0841a8e85adc560c4e63</originalsourceid><addsrcrecordid>eNptUl2LEzEUHURx1-o_EB0QxJfWJJNkZnwQSvGjsCJIfY6ZzE2bmiazyczC-uvNbGeXVnwISW7OPffek5NlLzFa4KLE7_d-CE7aRecdLBAu65KRR9klrgsy5wQVj0_OF9mzGPcIsaLi_Gl2QaqS8nS-zH5tfixX39abD_nS5aA1qN7cQN6ZDqxxkGsf8j5I9du4bS5dm5a0t3_GmwJrY-5dfjAq-E72PQQX834X_LDdpWjvo4nPsyda2ggvpn2W_fz8abP6Or_6_mW9Wl7NFatYPy-VBsYaYIjoWiEEVUkK1iBa81rpVtOmYIVsgNRKSVRRLCuomGwV40hR4MUse33k7ayPYhInClyTJFZFCUuI9RHRerkXXTAHGW6Fl0bcBXzYChl6oywIBZohXYLCVNKW46ZMDXCKCecVxmis9nGqNjQHaBW4JJI9Iz1_cWYntv5GMEYqwotE8G4iCP56gNiLg4mjotKBH-76phwhymmCvvkH-v_pJtRWpgGM0378tpFULGmdjFCgtGbZ2xPUDqTtd9HboTfexXMgPQLT18YYQD_MhpEY_XffhBj9Jyb_pbRXp7o8JN0brvgLvfbXzQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923718425</pqid></control><display><type>article</type><title>TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Burri, Olivier ; Wolf, Benita ; Seitz, Arne ; Gönczy, Pierre</creator><creatorcontrib>Burri, Olivier ; Wolf, Benita ; Seitz, Arne ; Gönczy, Pierre</creatorcontrib><description>The use of micropatterns has transformed investigations of dynamic biological processes by enabling the reproducible analysis of live cells using time-lapse fluorescence microscopy. With micropatterns, thousands of individual cells can be efficiently imaged in parallel, rendering the approach well suited for screening projects. Despite being powerful, such screens remain challenging in terms of data handling and analysis. Typically, only a fraction of micropatterns is occupied in a manner suitable to monitor a given phenotypic output. Moreover, the presence of dying or otherwise compromised cells complicates the analysis. Therefore, focusing strictly on relevant cells in such large time-lapse microscopy dataset poses interesting analysis challenges that are not readily met by existing software packages. This motivated us to develop an image analysis pipeline that handles all necessary image processing steps within one open-source platform to detect and analyze individual cells seeded on micropatterns through mitosis. We introduce a comprehensive image analysis pipeline running on Fiji termed TRACMIT (pipeline for TRACking and analyzing cells on micropatterns through MITosis). TRACMIT was developed to rapidly and accurately assess the orientation of the mitotic spindle during metaphase in time-lapse fluorescence microscopy of human cells expressing mCherry::histone 2B and plated on L-shaped micropatterns. This solution enables one to perform the entire analysis from the raw data, avoiding the need to save intermediate images, thereby decreasing data volume and thus reducing the data that needs to be processed. We first select micropatterns containing a single cell and then identify anaphase figures in the time-lapse recording. Next, TRACMIT tracks back in time until metaphase, when the angle of the mitotic spindle with respect to the micropattern is assessed. We designed the pipeline to allow for manual validation of selected cells with a simple user interface, and to enable analysis of cells plated on micropatterns of different shapes. For ease of use, the entire pipeline is provided as a series of Fiji/ImageJ macros, grouped into an ActionBar. In conclusion, the open source TRACMIT pipeline enables high-throughput analysis of single mitotic cells on micropatterns, thus accurately and efficiently allowing automatic determination of spindle positioning from time-lapse recordings.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0179752</identifier><identifier>PMID: 28746386</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anaphase ; Biological activity ; Biology and Life Sciences ; Cell division ; Cell Tracking - methods ; Cells (Biology) ; Data processing ; Datasets ; Fluorescence ; Fluorescence microscopy ; Freeware ; HeLa Cells ; Histones - genetics ; Histones - metabolism ; Humans ; Image analysis ; Image detection ; Image processing ; Life sciences ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Medical research ; Metaphase ; Micropatterning ; Microscopy ; Microscopy, Fluorescence - methods ; Mitosis ; Red Fluorescent Protein ; Reproducibility of Results ; Research and analysis methods ; Screening projects ; Software packages ; Source code ; Spindle Apparatus ; Time-Lapse Imaging - methods ; Tracking</subject><ispartof>PloS one, 2017-07, Vol.12 (7), p.e0179752-e0179752</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Burri et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2017 Burri et al 2017 Burri et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-7cfe55be502f9c00e87235b04969cfdf4b353abe29cca0841a8e85adc560c4e63</citedby><cites>FETCH-LOGICAL-c585t-7cfe55be502f9c00e87235b04969cfdf4b353abe29cca0841a8e85adc560c4e63</cites><orcidid>0000-0002-6305-6883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528263/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528263/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28746386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burri, Olivier</creatorcontrib><creatorcontrib>Wolf, Benita</creatorcontrib><creatorcontrib>Seitz, Arne</creatorcontrib><creatorcontrib>Gönczy, Pierre</creatorcontrib><title>TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The use of micropatterns has transformed investigations of dynamic biological processes by enabling the reproducible analysis of live cells using time-lapse fluorescence microscopy. With micropatterns, thousands of individual cells can be efficiently imaged in parallel, rendering the approach well suited for screening projects. Despite being powerful, such screens remain challenging in terms of data handling and analysis. Typically, only a fraction of micropatterns is occupied in a manner suitable to monitor a given phenotypic output. Moreover, the presence of dying or otherwise compromised cells complicates the analysis. Therefore, focusing strictly on relevant cells in such large time-lapse microscopy dataset poses interesting analysis challenges that are not readily met by existing software packages. This motivated us to develop an image analysis pipeline that handles all necessary image processing steps within one open-source platform to detect and analyze individual cells seeded on micropatterns through mitosis. We introduce a comprehensive image analysis pipeline running on Fiji termed TRACMIT (pipeline for TRACking and analyzing cells on micropatterns through MITosis). TRACMIT was developed to rapidly and accurately assess the orientation of the mitotic spindle during metaphase in time-lapse fluorescence microscopy of human cells expressing mCherry::histone 2B and plated on L-shaped micropatterns. This solution enables one to perform the entire analysis from the raw data, avoiding the need to save intermediate images, thereby decreasing data volume and thus reducing the data that needs to be processed. We first select micropatterns containing a single cell and then identify anaphase figures in the time-lapse recording. Next, TRACMIT tracks back in time until metaphase, when the angle of the mitotic spindle with respect to the micropattern is assessed. We designed the pipeline to allow for manual validation of selected cells with a simple user interface, and to enable analysis of cells plated on micropatterns of different shapes. For ease of use, the entire pipeline is provided as a series of Fiji/ImageJ macros, grouped into an ActionBar. In conclusion, the open source TRACMIT pipeline enables high-throughput analysis of single mitotic cells on micropatterns, thus accurately and efficiently allowing automatic determination of spindle positioning from time-lapse recordings.</description><subject>Anaphase</subject><subject>Biological activity</subject><subject>Biology and Life Sciences</subject><subject>Cell division</subject><subject>Cell Tracking - methods</subject><subject>Cells (Biology)</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Freeware</subject><subject>HeLa Cells</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Life sciences</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Medical research</subject><subject>Metaphase</subject><subject>Micropatterning</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Mitosis</subject><subject>Red Fluorescent Protein</subject><subject>Reproducibility of Results</subject><subject>Research and analysis methods</subject><subject>Screening projects</subject><subject>Software packages</subject><subject>Source code</subject><subject>Spindle Apparatus</subject><subject>Time-Lapse Imaging - methods</subject><subject>Tracking</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUl2LEzEUHURx1-o_EB0QxJfWJJNkZnwQSvGjsCJIfY6ZzE2bmiazyczC-uvNbGeXVnwISW7OPffek5NlLzFa4KLE7_d-CE7aRecdLBAu65KRR9klrgsy5wQVj0_OF9mzGPcIsaLi_Gl2QaqS8nS-zH5tfixX39abD_nS5aA1qN7cQN6ZDqxxkGsf8j5I9du4bS5dm5a0t3_GmwJrY-5dfjAq-E72PQQX834X_LDdpWjvo4nPsyda2ggvpn2W_fz8abP6Or_6_mW9Wl7NFatYPy-VBsYaYIjoWiEEVUkK1iBa81rpVtOmYIVsgNRKSVRRLCuomGwV40hR4MUse33k7ayPYhInClyTJFZFCUuI9RHRerkXXTAHGW6Fl0bcBXzYChl6oywIBZohXYLCVNKW46ZMDXCKCecVxmis9nGqNjQHaBW4JJI9Iz1_cWYntv5GMEYqwotE8G4iCP56gNiLg4mjotKBH-76phwhymmCvvkH-v_pJtRWpgGM0378tpFULGmdjFCgtGbZ2xPUDqTtd9HboTfexXMgPQLT18YYQD_MhpEY_XffhBj9Jyb_pbRXp7o8JN0brvgLvfbXzQ</recordid><startdate>20170726</startdate><enddate>20170726</enddate><creator>Burri, Olivier</creator><creator>Wolf, Benita</creator><creator>Seitz, Arne</creator><creator>Gönczy, Pierre</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6305-6883</orcidid></search><sort><creationdate>20170726</creationdate><title>TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis</title><author>Burri, Olivier ; Wolf, Benita ; Seitz, Arne ; Gönczy, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-7cfe55be502f9c00e87235b04969cfdf4b353abe29cca0841a8e85adc560c4e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anaphase</topic><topic>Biological activity</topic><topic>Biology and Life Sciences</topic><topic>Cell division</topic><topic>Cell Tracking - methods</topic><topic>Cells (Biology)</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Freeware</topic><topic>HeLa Cells</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Life sciences</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Medical research</topic><topic>Metaphase</topic><topic>Micropatterning</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Mitosis</topic><topic>Red Fluorescent Protein</topic><topic>Reproducibility of Results</topic><topic>Research and analysis methods</topic><topic>Screening projects</topic><topic>Software packages</topic><topic>Source code</topic><topic>Spindle Apparatus</topic><topic>Time-Lapse Imaging - methods</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burri, Olivier</creatorcontrib><creatorcontrib>Wolf, Benita</creatorcontrib><creatorcontrib>Seitz, Arne</creatorcontrib><creatorcontrib>Gönczy, Pierre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burri, Olivier</au><au>Wolf, Benita</au><au>Seitz, Arne</au><au>Gönczy, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2017-07-26</date><risdate>2017</risdate><volume>12</volume><issue>7</issue><spage>e0179752</spage><epage>e0179752</epage><pages>e0179752-e0179752</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The use of micropatterns has transformed investigations of dynamic biological processes by enabling the reproducible analysis of live cells using time-lapse fluorescence microscopy. With micropatterns, thousands of individual cells can be efficiently imaged in parallel, rendering the approach well suited for screening projects. Despite being powerful, such screens remain challenging in terms of data handling and analysis. Typically, only a fraction of micropatterns is occupied in a manner suitable to monitor a given phenotypic output. Moreover, the presence of dying or otherwise compromised cells complicates the analysis. Therefore, focusing strictly on relevant cells in such large time-lapse microscopy dataset poses interesting analysis challenges that are not readily met by existing software packages. This motivated us to develop an image analysis pipeline that handles all necessary image processing steps within one open-source platform to detect and analyze individual cells seeded on micropatterns through mitosis. We introduce a comprehensive image analysis pipeline running on Fiji termed TRACMIT (pipeline for TRACking and analyzing cells on micropatterns through MITosis). TRACMIT was developed to rapidly and accurately assess the orientation of the mitotic spindle during metaphase in time-lapse fluorescence microscopy of human cells expressing mCherry::histone 2B and plated on L-shaped micropatterns. This solution enables one to perform the entire analysis from the raw data, avoiding the need to save intermediate images, thereby decreasing data volume and thus reducing the data that needs to be processed. We first select micropatterns containing a single cell and then identify anaphase figures in the time-lapse recording. Next, TRACMIT tracks back in time until metaphase, when the angle of the mitotic spindle with respect to the micropattern is assessed. We designed the pipeline to allow for manual validation of selected cells with a simple user interface, and to enable analysis of cells plated on micropatterns of different shapes. For ease of use, the entire pipeline is provided as a series of Fiji/ImageJ macros, grouped into an ActionBar. In conclusion, the open source TRACMIT pipeline enables high-throughput analysis of single mitotic cells on micropatterns, thus accurately and efficiently allowing automatic determination of spindle positioning from time-lapse recordings.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28746386</pmid><doi>10.1371/journal.pone.0179752</doi><orcidid>https://orcid.org/0000-0002-6305-6883</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2017-07, Vol.12 (7), p.e0179752-e0179752
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1923718425
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Anaphase
Biological activity
Biology and Life Sciences
Cell division
Cell Tracking - methods
Cells (Biology)
Data processing
Datasets
Fluorescence
Fluorescence microscopy
Freeware
HeLa Cells
Histones - genetics
Histones - metabolism
Humans
Image analysis
Image detection
Image processing
Life sciences
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Medical research
Metaphase
Micropatterning
Microscopy
Microscopy, Fluorescence - methods
Mitosis
Red Fluorescent Protein
Reproducibility of Results
Research and analysis methods
Screening projects
Software packages
Source code
Spindle Apparatus
Time-Lapse Imaging - methods
Tracking
title TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TRACMIT:%20An%20effective%20pipeline%20for%20tracking%20and%20analyzing%20cells%20on%20micropatterns%20through%20mitosis&rft.jtitle=PloS%20one&rft.au=Burri,%20Olivier&rft.date=2017-07-26&rft.volume=12&rft.issue=7&rft.spage=e0179752&rft.epage=e0179752&rft.pages=e0179752-e0179752&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0179752&rft_dat=%3Cgale_plos_%3EA499323032%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923718425&rft_id=info:pmid/28746386&rft_galeid=A499323032&rft_doaj_id=oai_doaj_org_article_cef50f7ec14a4d61b7f4b64126681106&rfr_iscdi=true