Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease

Recent research has demonstrated the use of the structural connectome as a powerful tool to characterize the network architecture of the brain and potentially generate biomarkers for neurologic and psychiatric disorders. In particular, the anatomic embedding of the edges of the cerebral graph have b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2017-06, Vol.13 (6), p.e1005550-e1005550
Hauptverfasser: Wang, Maxwell B, Owen, Julia P, Mukherjee, Pratik, Raj, Ashish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1005550
container_issue 6
container_start_page e1005550
container_title PLoS computational biology
container_volume 13
creator Wang, Maxwell B
Owen, Julia P
Mukherjee, Pratik
Raj, Ashish
description Recent research has demonstrated the use of the structural connectome as a powerful tool to characterize the network architecture of the brain and potentially generate biomarkers for neurologic and psychiatric disorders. In particular, the anatomic embedding of the edges of the cerebral graph have been postulated to elucidate the relative importance of white matter tracts to the overall network connectivity, explaining the varying effects of localized white matter pathology on cognition and behavior. Here, we demonstrate the use of a linear diffusion model to quantify the impact of these perturbations on brain connectivity. We show that the eigenmodes governing the dynamics of this model are strongly conserved between healthy subjects regardless of cortical and sub-cortical parcellations, but show significant, interpretable deviations in improperly developed brains. More specifically, we investigated the effect of agenesis of the corpus callosum (AgCC), one of the most common brain malformations to identify differences in the effect of virtual corpus callosotomies and the neurodevelopmental disorder itself. These findings, including the strong correspondence between regions of highest importance from graph eigenmodes of network diffusion and nexus regions of white matter from edge density imaging, show converging evidence toward understanding the relationship between white matter anatomy and the structural connectome.
doi_str_mv 10.1371/journal.pcbi.1005550
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1919507295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497485234</galeid><doaj_id>oai_doaj_org_article_eef006fd4d064b62b54980cac1b66a64</doaj_id><sourcerecordid>A497485234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-4e7a2172f7e32994ad2bada20ce05ae14d83bb3018c4f63ba77fddfcc800bb763</originalsourceid><addsrcrecordid>eNqVksluFDEQhlsIRELgDRBY4gKHGey23csFKUQsI0UgsZytsl0946G7PdjuBN4ez5Iog7hwcsn-6q-q31UUTxmdM16z12s_hRH6-cZoN2eUSinpveKUSclnNZfN_TvxSfEoxjWlOWyrh8VJ2VSCNpSfFtdvA7iRjJiuffhB0C1xHLzFSDbBXzmLBEjweoqJwGiJ8cMGTCIBNwEjjgmS8yPxHUkrJDGFyaQpQJ_BcUST_IAky68Q-rTaKVgXESI-Lh500Ed8cjjPiu_v3327-Di7_PxhcXF-OTMV52kmsIaS1WVXIy_bVoAtNVgoqUEqAZmwDdeaU9YY0VVcQ1131nbGNJRqXVf8rHi-1930PqqDZ1GxlrWS1mUrM7HYE9bDWm2CGyD8Vh6c2l34sFQQkjM9KsSO0qqzwtJK6KrUUrQNNWCYriqoRNZ6c6g26QGtyQZlM45Ej19Gt1JLf6WkaGjDyizw8iAQ_M8JY1KDiwb7Hkb0065vzltRcp7RF3-h_55uvqeWkAdwY-dz3dwxWBxc_iTsXL4_F20tGlny7QivjhIyk_BXWsIUo1p8_fIf7KdjVuxZE3yMAbtbVxhV24W-aV9tF1odFjqnPbvr6G3SzQbzP7UG9Ns</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919507295</pqid></control><display><type>article</type><title>Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wang, Maxwell B ; Owen, Julia P ; Mukherjee, Pratik ; Raj, Ashish</creator><creatorcontrib>Wang, Maxwell B ; Owen, Julia P ; Mukherjee, Pratik ; Raj, Ashish</creatorcontrib><description>Recent research has demonstrated the use of the structural connectome as a powerful tool to characterize the network architecture of the brain and potentially generate biomarkers for neurologic and psychiatric disorders. In particular, the anatomic embedding of the edges of the cerebral graph have been postulated to elucidate the relative importance of white matter tracts to the overall network connectivity, explaining the varying effects of localized white matter pathology on cognition and behavior. Here, we demonstrate the use of a linear diffusion model to quantify the impact of these perturbations on brain connectivity. We show that the eigenmodes governing the dynamics of this model are strongly conserved between healthy subjects regardless of cortical and sub-cortical parcellations, but show significant, interpretable deviations in improperly developed brains. More specifically, we investigated the effect of agenesis of the corpus callosum (AgCC), one of the most common brain malformations to identify differences in the effect of virtual corpus callosotomies and the neurodevelopmental disorder itself. These findings, including the strong correspondence between regions of highest importance from graph eigenmodes of network diffusion and nexus regions of white matter from edge density imaging, show converging evidence toward understanding the relationship between white matter anatomy and the structural connectome.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005550</identifier><identifier>PMID: 28640803</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Agenesis of Corpus Callosum - diagnostic imaging ; Agenesis of Corpus Callosum - pathology ; Anatomy ; Attention deficit hyperactivity disorder ; Behavior disorders ; Bioengineering ; Bioindicators ; Biology and Life Sciences ; Biomarkers ; Brain ; Brain - diagnostic imaging ; Brain - pathology ; Brain architecture ; Brain Diseases - diagnostic imaging ; Brain Diseases - pathology ; Brain research ; Cognition ; Computer and Information Sciences ; Connectome - methods ; Corpus callosum ; Cortex ; Decomposition ; Diffusion models ; Diffusion Tensor Imaging - methods ; Disorders ; Embedding ; Female ; Graph theory ; Health aspects ; Humans ; Image Interpretation, Computer-Assisted - methods ; Male ; Medicine and Health Sciences ; Mental disorders ; Nerve Net - diagnostic imaging ; Nerve Net - pathology ; Neural circuitry ; Neural networks ; Neural Pathways - diagnostic imaging ; Neural Pathways - pathology ; Neurodevelopmental disorders ; Neuroimaging ; Neurosciences ; Pathology ; Physical Sciences ; Reproducibility of Results ; Research and Analysis Methods ; Sensitivity and Specificity ; Substantia alba ; White Matter - pathology</subject><ispartof>PLoS computational biology, 2017-06, Vol.13 (6), p.e1005550-e1005550</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wang MB, Owen JP, Mukherjee P, Raj A (2017) Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease. PLoS Comput Biol 13(6): e1005550. https://doi.org/10.1371/journal.pcbi.1005550</rights><rights>2017 Wang et al 2017 Wang et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wang MB, Owen JP, Mukherjee P, Raj A (2017) Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease. PLoS Comput Biol 13(6): e1005550. https://doi.org/10.1371/journal.pcbi.1005550</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-4e7a2172f7e32994ad2bada20ce05ae14d83bb3018c4f63ba77fddfcc800bb763</citedby><cites>FETCH-LOGICAL-c633t-4e7a2172f7e32994ad2bada20ce05ae14d83bb3018c4f63ba77fddfcc800bb763</cites><orcidid>0000-0002-9217-6593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480812/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480812/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28640803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Maxwell B</creatorcontrib><creatorcontrib>Owen, Julia P</creatorcontrib><creatorcontrib>Mukherjee, Pratik</creatorcontrib><creatorcontrib>Raj, Ashish</creatorcontrib><title>Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Recent research has demonstrated the use of the structural connectome as a powerful tool to characterize the network architecture of the brain and potentially generate biomarkers for neurologic and psychiatric disorders. In particular, the anatomic embedding of the edges of the cerebral graph have been postulated to elucidate the relative importance of white matter tracts to the overall network connectivity, explaining the varying effects of localized white matter pathology on cognition and behavior. Here, we demonstrate the use of a linear diffusion model to quantify the impact of these perturbations on brain connectivity. We show that the eigenmodes governing the dynamics of this model are strongly conserved between healthy subjects regardless of cortical and sub-cortical parcellations, but show significant, interpretable deviations in improperly developed brains. More specifically, we investigated the effect of agenesis of the corpus callosum (AgCC), one of the most common brain malformations to identify differences in the effect of virtual corpus callosotomies and the neurodevelopmental disorder itself. These findings, including the strong correspondence between regions of highest importance from graph eigenmodes of network diffusion and nexus regions of white matter from edge density imaging, show converging evidence toward understanding the relationship between white matter anatomy and the structural connectome.</description><subject>Adult</subject><subject>Agenesis of Corpus Callosum - diagnostic imaging</subject><subject>Agenesis of Corpus Callosum - pathology</subject><subject>Anatomy</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Behavior disorders</subject><subject>Bioengineering</subject><subject>Bioindicators</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Brain architecture</subject><subject>Brain Diseases - diagnostic imaging</subject><subject>Brain Diseases - pathology</subject><subject>Brain research</subject><subject>Cognition</subject><subject>Computer and Information Sciences</subject><subject>Connectome - methods</subject><subject>Corpus callosum</subject><subject>Cortex</subject><subject>Decomposition</subject><subject>Diffusion models</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Disorders</subject><subject>Embedding</subject><subject>Female</subject><subject>Graph theory</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Mental disorders</subject><subject>Nerve Net - diagnostic imaging</subject><subject>Nerve Net - pathology</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - pathology</subject><subject>Neurodevelopmental disorders</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Pathology</subject><subject>Physical Sciences</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Sensitivity and Specificity</subject><subject>Substantia alba</subject><subject>White Matter - pathology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVksluFDEQhlsIRELgDRBY4gKHGey23csFKUQsI0UgsZytsl0946G7PdjuBN4ez5Iog7hwcsn-6q-q31UUTxmdM16z12s_hRH6-cZoN2eUSinpveKUSclnNZfN_TvxSfEoxjWlOWyrh8VJ2VSCNpSfFtdvA7iRjJiuffhB0C1xHLzFSDbBXzmLBEjweoqJwGiJ8cMGTCIBNwEjjgmS8yPxHUkrJDGFyaQpQJ_BcUST_IAky68Q-rTaKVgXESI-Lh500Ed8cjjPiu_v3327-Di7_PxhcXF-OTMV52kmsIaS1WVXIy_bVoAtNVgoqUEqAZmwDdeaU9YY0VVcQ1131nbGNJRqXVf8rHi-1930PqqDZ1GxlrWS1mUrM7HYE9bDWm2CGyD8Vh6c2l34sFQQkjM9KsSO0qqzwtJK6KrUUrQNNWCYriqoRNZ6c6g26QGtyQZlM45Ej19Gt1JLf6WkaGjDyizw8iAQ_M8JY1KDiwb7Hkb0065vzltRcp7RF3-h_55uvqeWkAdwY-dz3dwxWBxc_iTsXL4_F20tGlny7QivjhIyk_BXWsIUo1p8_fIf7KdjVuxZE3yMAbtbVxhV24W-aV9tF1odFjqnPbvr6G3SzQbzP7UG9Ns</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Wang, Maxwell B</creator><creator>Owen, Julia P</creator><creator>Mukherjee, Pratik</creator><creator>Raj, Ashish</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9217-6593</orcidid></search><sort><creationdate>20170601</creationdate><title>Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease</title><author>Wang, Maxwell B ; Owen, Julia P ; Mukherjee, Pratik ; Raj, Ashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-4e7a2172f7e32994ad2bada20ce05ae14d83bb3018c4f63ba77fddfcc800bb763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Agenesis of Corpus Callosum - diagnostic imaging</topic><topic>Agenesis of Corpus Callosum - pathology</topic><topic>Anatomy</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Behavior disorders</topic><topic>Bioengineering</topic><topic>Bioindicators</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Brain architecture</topic><topic>Brain Diseases - diagnostic imaging</topic><topic>Brain Diseases - pathology</topic><topic>Brain research</topic><topic>Cognition</topic><topic>Computer and Information Sciences</topic><topic>Connectome - methods</topic><topic>Corpus callosum</topic><topic>Cortex</topic><topic>Decomposition</topic><topic>Diffusion models</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Disorders</topic><topic>Embedding</topic><topic>Female</topic><topic>Graph theory</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Mental disorders</topic><topic>Nerve Net - diagnostic imaging</topic><topic>Nerve Net - pathology</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - pathology</topic><topic>Neurodevelopmental disorders</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Pathology</topic><topic>Physical Sciences</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Sensitivity and Specificity</topic><topic>Substantia alba</topic><topic>White Matter - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Maxwell B</creatorcontrib><creatorcontrib>Owen, Julia P</creatorcontrib><creatorcontrib>Mukherjee, Pratik</creatorcontrib><creatorcontrib>Raj, Ashish</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Maxwell B</au><au>Owen, Julia P</au><au>Mukherjee, Pratik</au><au>Raj, Ashish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>13</volume><issue>6</issue><spage>e1005550</spage><epage>e1005550</epage><pages>e1005550-e1005550</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Recent research has demonstrated the use of the structural connectome as a powerful tool to characterize the network architecture of the brain and potentially generate biomarkers for neurologic and psychiatric disorders. In particular, the anatomic embedding of the edges of the cerebral graph have been postulated to elucidate the relative importance of white matter tracts to the overall network connectivity, explaining the varying effects of localized white matter pathology on cognition and behavior. Here, we demonstrate the use of a linear diffusion model to quantify the impact of these perturbations on brain connectivity. We show that the eigenmodes governing the dynamics of this model are strongly conserved between healthy subjects regardless of cortical and sub-cortical parcellations, but show significant, interpretable deviations in improperly developed brains. More specifically, we investigated the effect of agenesis of the corpus callosum (AgCC), one of the most common brain malformations to identify differences in the effect of virtual corpus callosotomies and the neurodevelopmental disorder itself. These findings, including the strong correspondence between regions of highest importance from graph eigenmodes of network diffusion and nexus regions of white matter from edge density imaging, show converging evidence toward understanding the relationship between white matter anatomy and the structural connectome.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28640803</pmid><doi>10.1371/journal.pcbi.1005550</doi><orcidid>https://orcid.org/0000-0002-9217-6593</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2017-06, Vol.13 (6), p.e1005550-e1005550
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1919507295
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adult
Agenesis of Corpus Callosum - diagnostic imaging
Agenesis of Corpus Callosum - pathology
Anatomy
Attention deficit hyperactivity disorder
Behavior disorders
Bioengineering
Bioindicators
Biology and Life Sciences
Biomarkers
Brain
Brain - diagnostic imaging
Brain - pathology
Brain architecture
Brain Diseases - diagnostic imaging
Brain Diseases - pathology
Brain research
Cognition
Computer and Information Sciences
Connectome - methods
Corpus callosum
Cortex
Decomposition
Diffusion models
Diffusion Tensor Imaging - methods
Disorders
Embedding
Female
Graph theory
Health aspects
Humans
Image Interpretation, Computer-Assisted - methods
Male
Medicine and Health Sciences
Mental disorders
Nerve Net - diagnostic imaging
Nerve Net - pathology
Neural circuitry
Neural networks
Neural Pathways - diagnostic imaging
Neural Pathways - pathology
Neurodevelopmental disorders
Neuroimaging
Neurosciences
Pathology
Physical Sciences
Reproducibility of Results
Research and Analysis Methods
Sensitivity and Specificity
Substantia alba
White Matter - pathology
title Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20network%20eigenmodes%20provide%20a%20robust%20and%20compact%20representation%20of%20the%20structural%20connectome%20in%20health%20and%20disease&rft.jtitle=PLoS%20computational%20biology&rft.au=Wang,%20Maxwell%20B&rft.date=2017-06-01&rft.volume=13&rft.issue=6&rft.spage=e1005550&rft.epage=e1005550&rft.pages=e1005550-e1005550&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005550&rft_dat=%3Cgale_plos_%3EA497485234%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919507295&rft_id=info:pmid/28640803&rft_galeid=A497485234&rft_doaj_id=oai_doaj_org_article_eef006fd4d064b62b54980cac1b66a64&rfr_iscdi=true