Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease
Recent research has demonstrated the use of the structural connectome as a powerful tool to characterize the network architecture of the brain and potentially generate biomarkers for neurologic and psychiatric disorders. In particular, the anatomic embedding of the edges of the cerebral graph have b...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2017-06, Vol.13 (6), p.e1005550-e1005550 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1005550 |
---|---|
container_issue | 6 |
container_start_page | e1005550 |
container_title | PLoS computational biology |
container_volume | 13 |
creator | Wang, Maxwell B Owen, Julia P Mukherjee, Pratik Raj, Ashish |
description | Recent research has demonstrated the use of the structural connectome as a powerful tool to characterize the network architecture of the brain and potentially generate biomarkers for neurologic and psychiatric disorders. In particular, the anatomic embedding of the edges of the cerebral graph have been postulated to elucidate the relative importance of white matter tracts to the overall network connectivity, explaining the varying effects of localized white matter pathology on cognition and behavior. Here, we demonstrate the use of a linear diffusion model to quantify the impact of these perturbations on brain connectivity. We show that the eigenmodes governing the dynamics of this model are strongly conserved between healthy subjects regardless of cortical and sub-cortical parcellations, but show significant, interpretable deviations in improperly developed brains. More specifically, we investigated the effect of agenesis of the corpus callosum (AgCC), one of the most common brain malformations to identify differences in the effect of virtual corpus callosotomies and the neurodevelopmental disorder itself. These findings, including the strong correspondence between regions of highest importance from graph eigenmodes of network diffusion and nexus regions of white matter from edge density imaging, show converging evidence toward understanding the relationship between white matter anatomy and the structural connectome. |
doi_str_mv | 10.1371/journal.pcbi.1005550 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1919507295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497485234</galeid><doaj_id>oai_doaj_org_article_eef006fd4d064b62b54980cac1b66a64</doaj_id><sourcerecordid>A497485234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-4e7a2172f7e32994ad2bada20ce05ae14d83bb3018c4f63ba77fddfcc800bb763</originalsourceid><addsrcrecordid>eNqVksluFDEQhlsIRELgDRBY4gKHGey23csFKUQsI0UgsZytsl0946G7PdjuBN4ez5Iog7hwcsn-6q-q31UUTxmdM16z12s_hRH6-cZoN2eUSinpveKUSclnNZfN_TvxSfEoxjWlOWyrh8VJ2VSCNpSfFtdvA7iRjJiuffhB0C1xHLzFSDbBXzmLBEjweoqJwGiJ8cMGTCIBNwEjjgmS8yPxHUkrJDGFyaQpQJ_BcUST_IAky68Q-rTaKVgXESI-Lh500Ed8cjjPiu_v3327-Di7_PxhcXF-OTMV52kmsIaS1WVXIy_bVoAtNVgoqUEqAZmwDdeaU9YY0VVcQ1131nbGNJRqXVf8rHi-1930PqqDZ1GxlrWS1mUrM7HYE9bDWm2CGyD8Vh6c2l34sFQQkjM9KsSO0qqzwtJK6KrUUrQNNWCYriqoRNZ6c6g26QGtyQZlM45Ej19Gt1JLf6WkaGjDyizw8iAQ_M8JY1KDiwb7Hkb0065vzltRcp7RF3-h_55uvqeWkAdwY-dz3dwxWBxc_iTsXL4_F20tGlny7QivjhIyk_BXWsIUo1p8_fIf7KdjVuxZE3yMAbtbVxhV24W-aV9tF1odFjqnPbvr6G3SzQbzP7UG9Ns</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919507295</pqid></control><display><type>article</type><title>Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wang, Maxwell B ; Owen, Julia P ; Mukherjee, Pratik ; Raj, Ashish</creator><creatorcontrib>Wang, Maxwell B ; Owen, Julia P ; Mukherjee, Pratik ; Raj, Ashish</creatorcontrib><description>Recent research has demonstrated the use of the structural connectome as a powerful tool to characterize the network architecture of the brain and potentially generate biomarkers for neurologic and psychiatric disorders. In particular, the anatomic embedding of the edges of the cerebral graph have been postulated to elucidate the relative importance of white matter tracts to the overall network connectivity, explaining the varying effects of localized white matter pathology on cognition and behavior. Here, we demonstrate the use of a linear diffusion model to quantify the impact of these perturbations on brain connectivity. We show that the eigenmodes governing the dynamics of this model are strongly conserved between healthy subjects regardless of cortical and sub-cortical parcellations, but show significant, interpretable deviations in improperly developed brains. More specifically, we investigated the effect of agenesis of the corpus callosum (AgCC), one of the most common brain malformations to identify differences in the effect of virtual corpus callosotomies and the neurodevelopmental disorder itself. These findings, including the strong correspondence between regions of highest importance from graph eigenmodes of network diffusion and nexus regions of white matter from edge density imaging, show converging evidence toward understanding the relationship between white matter anatomy and the structural connectome.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005550</identifier><identifier>PMID: 28640803</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Agenesis of Corpus Callosum - diagnostic imaging ; Agenesis of Corpus Callosum - pathology ; Anatomy ; Attention deficit hyperactivity disorder ; Behavior disorders ; Bioengineering ; Bioindicators ; Biology and Life Sciences ; Biomarkers ; Brain ; Brain - diagnostic imaging ; Brain - pathology ; Brain architecture ; Brain Diseases - diagnostic imaging ; Brain Diseases - pathology ; Brain research ; Cognition ; Computer and Information Sciences ; Connectome - methods ; Corpus callosum ; Cortex ; Decomposition ; Diffusion models ; Diffusion Tensor Imaging - methods ; Disorders ; Embedding ; Female ; Graph theory ; Health aspects ; Humans ; Image Interpretation, Computer-Assisted - methods ; Male ; Medicine and Health Sciences ; Mental disorders ; Nerve Net - diagnostic imaging ; Nerve Net - pathology ; Neural circuitry ; Neural networks ; Neural Pathways - diagnostic imaging ; Neural Pathways - pathology ; Neurodevelopmental disorders ; Neuroimaging ; Neurosciences ; Pathology ; Physical Sciences ; Reproducibility of Results ; Research and Analysis Methods ; Sensitivity and Specificity ; Substantia alba ; White Matter - pathology</subject><ispartof>PLoS computational biology, 2017-06, Vol.13 (6), p.e1005550-e1005550</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wang MB, Owen JP, Mukherjee P, Raj A (2017) Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease. PLoS Comput Biol 13(6): e1005550. https://doi.org/10.1371/journal.pcbi.1005550</rights><rights>2017 Wang et al 2017 Wang et al</rights><rights>2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wang MB, Owen JP, Mukherjee P, Raj A (2017) Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease. PLoS Comput Biol 13(6): e1005550. https://doi.org/10.1371/journal.pcbi.1005550</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-4e7a2172f7e32994ad2bada20ce05ae14d83bb3018c4f63ba77fddfcc800bb763</citedby><cites>FETCH-LOGICAL-c633t-4e7a2172f7e32994ad2bada20ce05ae14d83bb3018c4f63ba77fddfcc800bb763</cites><orcidid>0000-0002-9217-6593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480812/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480812/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28640803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Maxwell B</creatorcontrib><creatorcontrib>Owen, Julia P</creatorcontrib><creatorcontrib>Mukherjee, Pratik</creatorcontrib><creatorcontrib>Raj, Ashish</creatorcontrib><title>Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Recent research has demonstrated the use of the structural connectome as a powerful tool to characterize the network architecture of the brain and potentially generate biomarkers for neurologic and psychiatric disorders. In particular, the anatomic embedding of the edges of the cerebral graph have been postulated to elucidate the relative importance of white matter tracts to the overall network connectivity, explaining the varying effects of localized white matter pathology on cognition and behavior. Here, we demonstrate the use of a linear diffusion model to quantify the impact of these perturbations on brain connectivity. We show that the eigenmodes governing the dynamics of this model are strongly conserved between healthy subjects regardless of cortical and sub-cortical parcellations, but show significant, interpretable deviations in improperly developed brains. More specifically, we investigated the effect of agenesis of the corpus callosum (AgCC), one of the most common brain malformations to identify differences in the effect of virtual corpus callosotomies and the neurodevelopmental disorder itself. These findings, including the strong correspondence between regions of highest importance from graph eigenmodes of network diffusion and nexus regions of white matter from edge density imaging, show converging evidence toward understanding the relationship between white matter anatomy and the structural connectome.</description><subject>Adult</subject><subject>Agenesis of Corpus Callosum - diagnostic imaging</subject><subject>Agenesis of Corpus Callosum - pathology</subject><subject>Anatomy</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Behavior disorders</subject><subject>Bioengineering</subject><subject>Bioindicators</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Brain architecture</subject><subject>Brain Diseases - diagnostic imaging</subject><subject>Brain Diseases - pathology</subject><subject>Brain research</subject><subject>Cognition</subject><subject>Computer and Information Sciences</subject><subject>Connectome - methods</subject><subject>Corpus callosum</subject><subject>Cortex</subject><subject>Decomposition</subject><subject>Diffusion models</subject><subject>Diffusion Tensor Imaging - methods</subject><subject>Disorders</subject><subject>Embedding</subject><subject>Female</subject><subject>Graph theory</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Mental disorders</subject><subject>Nerve Net - diagnostic imaging</subject><subject>Nerve Net - pathology</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - pathology</subject><subject>Neurodevelopmental disorders</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Pathology</subject><subject>Physical Sciences</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Sensitivity and Specificity</subject><subject>Substantia alba</subject><subject>White Matter - pathology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVksluFDEQhlsIRELgDRBY4gKHGey23csFKUQsI0UgsZytsl0946G7PdjuBN4ez5Iog7hwcsn-6q-q31UUTxmdM16z12s_hRH6-cZoN2eUSinpveKUSclnNZfN_TvxSfEoxjWlOWyrh8VJ2VSCNpSfFtdvA7iRjJiuffhB0C1xHLzFSDbBXzmLBEjweoqJwGiJ8cMGTCIBNwEjjgmS8yPxHUkrJDGFyaQpQJ_BcUST_IAky68Q-rTaKVgXESI-Lh500Ed8cjjPiu_v3327-Di7_PxhcXF-OTMV52kmsIaS1WVXIy_bVoAtNVgoqUEqAZmwDdeaU9YY0VVcQ1131nbGNJRqXVf8rHi-1930PqqDZ1GxlrWS1mUrM7HYE9bDWm2CGyD8Vh6c2l34sFQQkjM9KsSO0qqzwtJK6KrUUrQNNWCYriqoRNZ6c6g26QGtyQZlM45Ej19Gt1JLf6WkaGjDyizw8iAQ_M8JY1KDiwb7Hkb0065vzltRcp7RF3-h_55uvqeWkAdwY-dz3dwxWBxc_iTsXL4_F20tGlny7QivjhIyk_BXWsIUo1p8_fIf7KdjVuxZE3yMAbtbVxhV24W-aV9tF1odFjqnPbvr6G3SzQbzP7UG9Ns</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Wang, Maxwell B</creator><creator>Owen, Julia P</creator><creator>Mukherjee, Pratik</creator><creator>Raj, Ashish</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9217-6593</orcidid></search><sort><creationdate>20170601</creationdate><title>Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease</title><author>Wang, Maxwell B ; Owen, Julia P ; Mukherjee, Pratik ; Raj, Ashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-4e7a2172f7e32994ad2bada20ce05ae14d83bb3018c4f63ba77fddfcc800bb763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Agenesis of Corpus Callosum - diagnostic imaging</topic><topic>Agenesis of Corpus Callosum - pathology</topic><topic>Anatomy</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Behavior disorders</topic><topic>Bioengineering</topic><topic>Bioindicators</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Brain architecture</topic><topic>Brain Diseases - diagnostic imaging</topic><topic>Brain Diseases - pathology</topic><topic>Brain research</topic><topic>Cognition</topic><topic>Computer and Information Sciences</topic><topic>Connectome - methods</topic><topic>Corpus callosum</topic><topic>Cortex</topic><topic>Decomposition</topic><topic>Diffusion models</topic><topic>Diffusion Tensor Imaging - methods</topic><topic>Disorders</topic><topic>Embedding</topic><topic>Female</topic><topic>Graph theory</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Mental disorders</topic><topic>Nerve Net - diagnostic imaging</topic><topic>Nerve Net - pathology</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - pathology</topic><topic>Neurodevelopmental disorders</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Pathology</topic><topic>Physical Sciences</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Sensitivity and Specificity</topic><topic>Substantia alba</topic><topic>White Matter - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Maxwell B</creatorcontrib><creatorcontrib>Owen, Julia P</creatorcontrib><creatorcontrib>Mukherjee, Pratik</creatorcontrib><creatorcontrib>Raj, Ashish</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Maxwell B</au><au>Owen, Julia P</au><au>Mukherjee, Pratik</au><au>Raj, Ashish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>13</volume><issue>6</issue><spage>e1005550</spage><epage>e1005550</epage><pages>e1005550-e1005550</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Recent research has demonstrated the use of the structural connectome as a powerful tool to characterize the network architecture of the brain and potentially generate biomarkers for neurologic and psychiatric disorders. In particular, the anatomic embedding of the edges of the cerebral graph have been postulated to elucidate the relative importance of white matter tracts to the overall network connectivity, explaining the varying effects of localized white matter pathology on cognition and behavior. Here, we demonstrate the use of a linear diffusion model to quantify the impact of these perturbations on brain connectivity. We show that the eigenmodes governing the dynamics of this model are strongly conserved between healthy subjects regardless of cortical and sub-cortical parcellations, but show significant, interpretable deviations in improperly developed brains. More specifically, we investigated the effect of agenesis of the corpus callosum (AgCC), one of the most common brain malformations to identify differences in the effect of virtual corpus callosotomies and the neurodevelopmental disorder itself. These findings, including the strong correspondence between regions of highest importance from graph eigenmodes of network diffusion and nexus regions of white matter from edge density imaging, show converging evidence toward understanding the relationship between white matter anatomy and the structural connectome.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>28640803</pmid><doi>10.1371/journal.pcbi.1005550</doi><orcidid>https://orcid.org/0000-0002-9217-6593</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2017-06, Vol.13 (6), p.e1005550-e1005550 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1919507295 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adult Agenesis of Corpus Callosum - diagnostic imaging Agenesis of Corpus Callosum - pathology Anatomy Attention deficit hyperactivity disorder Behavior disorders Bioengineering Bioindicators Biology and Life Sciences Biomarkers Brain Brain - diagnostic imaging Brain - pathology Brain architecture Brain Diseases - diagnostic imaging Brain Diseases - pathology Brain research Cognition Computer and Information Sciences Connectome - methods Corpus callosum Cortex Decomposition Diffusion models Diffusion Tensor Imaging - methods Disorders Embedding Female Graph theory Health aspects Humans Image Interpretation, Computer-Assisted - methods Male Medicine and Health Sciences Mental disorders Nerve Net - diagnostic imaging Nerve Net - pathology Neural circuitry Neural networks Neural Pathways - diagnostic imaging Neural Pathways - pathology Neurodevelopmental disorders Neuroimaging Neurosciences Pathology Physical Sciences Reproducibility of Results Research and Analysis Methods Sensitivity and Specificity Substantia alba White Matter - pathology |
title | Brain network eigenmodes provide a robust and compact representation of the structural connectome in health and disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20network%20eigenmodes%20provide%20a%20robust%20and%20compact%20representation%20of%20the%20structural%20connectome%20in%20health%20and%20disease&rft.jtitle=PLoS%20computational%20biology&rft.au=Wang,%20Maxwell%20B&rft.date=2017-06-01&rft.volume=13&rft.issue=6&rft.spage=e1005550&rft.epage=e1005550&rft.pages=e1005550-e1005550&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005550&rft_dat=%3Cgale_plos_%3EA497485234%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919507295&rft_id=info:pmid/28640803&rft_galeid=A497485234&rft_doaj_id=oai_doaj_org_article_eef006fd4d064b62b54980cac1b66a64&rfr_iscdi=true |